Anjana Bhattacharyya

Abstract—This paper deals with several types of fuzzy generalized closed sets and their interrelations. Also $fg^*\alpha$ -continuous, $fg^*\alpha$ open functions and $fg^*\alpha$ - closed functions are introduced and studied. Again, some important properties of such functions are studied in the newly defined spaces using $fg^*\alpha$ -closed sets.

Index Terms— $fg^*\alpha$ –open sets, $fg^*\alpha$ –closed sets, $fg^*\alpha$ –continuity, $fg^*\alpha$ –open functions, $fg^*\alpha$ –closed functions, $fg^*\alpha T_\alpha$ –space, $fg^*\alpha T_c$ space.

1 INTRODUCTION

HROUGHOUT the paper, by $(X, \tau), (Y, \tau_1), (Z, \tau_2)$ or simply by *X*,*Y*,*Z* respectively we mean fuzzy topological

spaces (fts, for short) in the sense of Chang [3]. A fuzzy set is a mapping from a nonempty set *X* to the unit closed interval I = [0, 1] [6]. 0_X , 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement of a fuzzy set A in X will be denoted by $1_X \setminus A$. The two fuzzy sets *A* and *B* in *X*, we write $A \leq B$ if and only if $A(x) \leq B(x)$, for all $x \in X$. clAandintA of a fuzzy set A in X [6] respectively stand for the fuzzy closure and fuzzy interior of *A* in *X*.

$2 fg^* \alpha$ -open sets and its properties

We now recall the following definitions, which are useful in the sequel.

Definition 2.1. A fuzzy set *A* in an fts (X, τ) is called fuzzy

- semiopen [1] if $A \leq cl$ int A (i)
- a-open [2] if $A \leq int \ cl \ int \ A$ (ii)
- regular open [1] if A = int cl A(iii)
- preopen [5] if $A \leq int \ cl \ A$ (iv)

The set of all fuzzy semiopen (resp. fuzzy α -open, fuzzy regular open, fuzzy preopen) sets in *X* is denoted by FSO(X) (resp. FaO(X), FRO(X), FPO(X)).

The complements of the above mentioned sets are called fuzzy semiclosed sets, fuzzy a-closed sets , fuzzy regular closed sets and fuzzy preclosed sets respectively.

Fuzzy semiclosure [1] (resp., fuzzy a-closure [2], fuzzy preclosure [5]) of a fuzzy set Ain X, denoted by scl A (resp. $\alpha cl A, p cl A$) is defined to be the intersection of all fuzzy semiclosed (resp., fuzzy a-closed, fuzzy preclosed) sets containing A. It is known that scl A (resp. $\alpha cl A, pclA$) is a fuzzy semiclosed (resp., fuzzy a-closed, fuzzy preclosed) set.

Definition 2.2. A fuzzy set *A* in an fts (X, τ) is called fuzzy

- (i) generalized closed (fg-closed, for short) if $cl A \leq U$ whenever $A \leq U$ and $U \in \tau$,
- (ii) semi-generalized closed (fsg-closed, for short) if $scl A \leq U$ whenever $A \leq U$ and $U \in FSO(X)$,

- (iii) generalized semiclosed (fgs-closed, for short) if $scl A \leq U$ whenever $A \leq U$ and $U \in \tau$,
- generalized α -closed ($fg\alpha$ -closed, for short) if (iv) $\alpha cl A \leq U$ whenever $A \leq U$ and $U \in FaO(X)$,
- (v) a-generalized closed ($f \alpha g$ -closed, for short) if $\alpha cl A \leq U$ whenever $A \leq U$ and $U \in \tau$,
- $g^{\#}$ -closed ($fg^{\#}$ -closed, for short) if $cl A \leq U$ (vi) whenever $A \leq U$ and U is $f \alpha g$ -open in (X, τ) ,
- (*fwga*-closed, for (vii) wgα-closed short) if $\alpha cl (int A) \leq U$ whenever $A \leq U$ and $U \in$ FaO(X),
- (*fwαg-*closed, (viii) *wαg*-closed for short) if $\alpha cl (int A) \leq U$ whenever $A \leq U$ and $U \in \tau$,
- (ix) $g^*\alpha$ -closed ($fg^*\alpha$ -closed, for short) if $\alpha cl A \leq U$ whenever $A \leq U$ and U is $fg\alpha$ -open in (X, τ) ,
- αgr -closed ($f \alpha gr$ -closed, for short) if $\alpha cl A \leq U$ (x) whenever $A \leq U$ and $U \in FRO(X)$,
- (xi) *gpr*-closed (*fgpr*-closed, for short) if $pcl A \leq U$ whenever $A \leq U$ and $U \in FRO(X)$.

The complements of the above mentioned sets are called their respective open sets.

Definition 2.3. An fts(X, τ) is called an

- fT_b -space if every fgs-closed set in (X, τ) is fuzzy (i) closed in (X, τ) ,
- (ii) $f \alpha T_b$ -space if every $f \alpha g$ -closed set in (X, τ) is fuzzy closed in (X, τ) ,
- $f g^* \alpha T_c$ -space if every $f g^* \alpha$ -closed set in (X, τ) is (iii) fuzzy closed in (X, τ) ,
- $fg^*\alpha T_\alpha$ -space if every $fg^*\alpha$ -closed set in (*X*, τ) is (iv) fuzzy α -closed in (X, τ),
- (v) $fwg\alpha T_{g^*\alpha}$ -space if every $fwg\alpha$ -closed set n (*X*, τ) is $f g^* \alpha$ -closed in (X, τ) .

Definition 2.4. A function $f : (X, \tau) \rightarrow (Y, \tau_1)$ is called fuzzy

- a-continuous [4] (fa-continuous, for short) if (i) $f^{-1}(V) \in FaO(X)$ for every $V \in \tau_1$,
- semicontinuous [1] (fs-continuous, for short) if (ii) $f^{-1}(V) \in FSO(X)$ for every $V \in \tau_1$,
- *g*-continuous (*fg*-continuous, for short) if $f^{-1}(V)$ (iii) is fuzzy *g*-open in (X, τ) for every $V \in \tau_1$,
- sg-continuous (fsg-continuous, for short) if (iv) $f^{-1}(V)$ is *fsg*-open in (*X*, τ) for every $V \in \tau_1$, (v)
 - gs-continuous (fgs-continuous, for short) if

IJSER © 2013 http://www.iiser.org

[•] Assistant Professor, Department of Mathematics, Victoria Institution (College), A.P.C. Road, Kolkata - 700009, India. PH - +919883118254. Email: anjanabhattacharyya@hotmail.com

 $f^{-1}(V)$ is fgs-open in (X, τ) for every $V \in \tau_1$,

- (vi) $g\alpha$ -continuous ($fg\alpha$ -continuous, for short) if $f^{-1}(V)$ is $fg\alpha$ -open in (X, τ) for every $V \in \tau_1$,
- (vii) αg -continuous ($f \alpha g$ -continuous, for short) if $f^{-1}(V)$ is $f \alpha g$ -open in (X, τ) for every $V \in \tau_1$,
- (viii) Completely continuous if $f^{-1}(V) \in FRO(X)$ for every $V \in \tau_1$,
- (ix) α -irresolute ($f\alpha$ -irresolute, for short) if $f^{-1}(V) \in FaO(X)$ for every $V \in FaO(Y)$,
- (x) $wg\alpha$ -continuous ($fwg\alpha$ -continuous, for short) if $f^{-1}(V)$ is $fwg\alpha$ -open in (X, τ) for every $V \in \tau_1$,
- (xi) $w\alpha g$ -continuous ($fw\alpha g$ -continuous, for short) if $f^{-1}(V)$ is $fw\alpha g$ -open in (X, τ) for every $V \in \tau_1$,
- (xii) $g^{\#}$ -continuous ($fg^{\#}$ -continuous, for short) if $f^{-1}(V)$ is $fg^{\#}$ -open in (X, τ) for every $V \in \tau_1$,
- (xiii) *gpr*-continuous (*fgpr*-continuous, for short) if $f^{-1}(V)$ is *fgpr*-open in (*X*, τ) for every $V \in \tau_1$,
- (xiv) agr-continuous (fagr-continuous, for short) if $f^{-1}(V)$ is fagr-open in (X, τ) for every $V \in \tau_1$.

Proposition 2.5. Every fuzzy open set V in an fts (X, τ) is $fg^*\alpha$ -open in (X, τ) .

Proof. Let $V \in \tau$ be arbitrary. Then $1_X \setminus V \in \tau^c$. Let $1_X \setminus V \leq G$ where *G* is $fg\alpha$ -open in (X, τ) . Then $\alpha cl(1_X \setminus V) \leq cl(1_X \setminus V) = 1_X \setminus V \leq G$. Therefore, $1_X \setminus V$ is $fg^*\alpha$ -closed in (X, τ) and hence *V* is $fg^*\alpha$ -open in (X, τ) .

Proposition 2.6. Every fuzzy regular open set in an $fts(X,\tau)$ is $fg^*\alpha$ -open in (X,τ) .

Proof. Since every fuzzy regular open set is fuzzy open, the proof follows from Proposition 2.5.

Proposition 2.7. Every $fg^*\alpha$ -open set in an $fts(X, \tau)$ is $fg\alpha$ -open in (X, τ) .

Proof. Let *V* be $fg^*\alpha$ -open set in (X, τ) . Then $1_X \setminus V$ is $fg^*\alpha$ closed in (X, τ) . Let $U \in F\alpha O(X)$ be such that $1_X \setminus V \leq U$. Then *U* is fuzzy $fg\alpha$ -open in (X, τ) . Indeed, $1_X \setminus U$ is fuzzy α -closed in (X, τ) and let $1_X \setminus U \leq W$ where $W \in F\alpha O(X)$. Then $\alpha cl(1_X \setminus U) = 1_X \setminus U \leq W$ and so $1_X \setminus U$ is $fg\alpha$ -closed and hence *U* is $fg\alpha$ -open in (X, τ) . Since $1_X \setminus V$ is $fg^*\alpha$ -closed in (X, τ) and $1_X \setminus V \leq U$ where *U* is $fg\alpha$ -open in (X, τ) , $\alpha cl(1_X \setminus V) \leq U$ implies that $1_X \setminus V$ is $fg\alpha$ -closed and hence *V* is $fg\alpha$ -open in (X, τ) .

Proposition 2.8. *Every fuzzy a-open set is* $f g^* \alpha$ *-open set in* (X, τ) *.*

Proof. Let $U \in FaO(X)$. Then $1_X \setminus U$ is fuzzy α -closed in (X, τ) . Let $1_X \setminus U \leq G$ where G is $fg\alpha$ -open in (X, τ) . Then $\alpha cl(1_X \setminus U) = 1_X \setminus U \leq G$ and so $1_X \setminus U$ is $fg^*\alpha$ -closed set and hence U is $fg^*\alpha$ -open set in (X, τ) .

Proposition 2.9. *Every* $fg^*\alpha$ *-open set is* $f\alpha g$ *-open n* (X, τ) *.*

Proof. Let *U* be an $fg^*\alpha$ -open set in (X, τ) . Then $1_X \setminus U$ is $fg^*\alpha$ -closed in (X, τ) . Let $V \in \tau$ be such that $1_X \setminus U \leq V$. Then $V \in$

FaO(X) and so by Proposition 2.8, *V* is $fg^*\alpha$ -open and hence by Proposition 2.7, *V* is $fg\alpha$ -open in (X,τ) . Since $1_X \setminus U$ is $fg^*\alpha$ closed, $\alpha cl(1_X \setminus U) \leq V$ and then $1_X \setminus U$ is $f\alpha g$ -closed and consequently, *U* is $f\alpha g$ -open in (X,τ) .

Proposition 2.10. Every $fg^{\#}$ -open set is $fg^{*}\alpha$ -open in (X, τ) .

Proof. Let $Abe fg^{\#}$ -open set in an fts (X, τ) . Then $1_X \setminus A$ is $fg^{\#}$ closed in (X, τ) . Let G be any $fg\alpha$ -open set in X such that $1_X \setminus A \leq G$. Then G is $f\alpha g$ -open set in X. Indeed, $1_X \setminus G$ is $fg\alpha$ closed in X. Let $W \in \tau$ be such that $1_X \setminus G \leq W$. Then $W \in$ FaO(X). Then $\alpha cl (1_X \setminus G) \leq W$ and so $1_X \setminus G$ is $f\alpha g$ -closed and hence G is $f\alpha g$ -open in (X, τ) . Therefore, $cl (1_X \setminus A) \leq G \Rightarrow$ $\alpha cl (1_X \setminus A) \leq cl (1_X \setminus A) \leq G$ and so $1_X \setminus A$ is $fg^*\alpha$ -closed and hence A is $fg^*\alpha$ -open in (X, τ) .

Proposition 2.11. *Every* $fg^*\alpha$ *-open set is* $fwg\alpha$ *-open in* (X, τ) *.*

Proof. Let *U* be $fg^*\alpha$ -open in (X, τ) . Then $1_X \setminus U$ is $fg^*\alpha$ -closed in (X, τ) . Let $G \in F\alpha O(X)$ be such that $1_X \setminus U \leq G$. Then by Proposition 2.7 and Proposition 2.8, *G* is $fg\alpha$ -open in (X, τ) . Since $1_X \setminus U$ is $fg^*\alpha$ -closed, $\alpha cl(1_X \setminus U) \leq G \Rightarrow \alpha cl int(1_X \setminus U) \leq \alpha cl(1_X \setminus U) \leq G$ and so $1_X \setminus U$ is $fwg\alpha$ -closed and hence *U* is $fwg\alpha$ -open in (X, τ) .

Proposition 2.12. *Every* $fg^*\alpha$ *-open set is* fgs*-open set in* (X, τ) *.*

Proof. Let *U* be $fg^*\alpha$ -open in (X, τ) . Then $1_X \setminus U$ is $fg^*\alpha$ -closed in *X*. Let $V \in \tau$ be such that $1_X \setminus U \leq V$. Then $V \in FaO(X)$ and then by Proposition 2.7 and Proposition 2.8, *V* is $fg\alpha$ -open set in *X*. As $1_X \setminus U$ is $fg^*\alpha$ -closed, $acl(1_X \setminus U) \leq V \implies scl(1_X \setminus U) \leq$ $acl(1_X \setminus U) \leq V$ and so $1_X \setminus U$ is fgs-closed in *X* and consequently, *U* is fgs-open in *X*.

Proposition 2.13. *Every* $fg^*\alpha$ *-open set is* $f\alpha gr$ *-open in* (X, τ) *.*

Proof.Let *A* be $fg^*\alpha$ -open in *X*. Then $1_X \setminus A$ is $fg^*\alpha$ -closed in *X*. Let $U \in FRO(X)$ be such that $1_X \setminus A \leq U$. Since $U \in FRO(X)$ $\Rightarrow U \in \tau$ and hence *U* is $fg\alpha$ -open in *X*, as $1_X \setminus A$ is $fg^*\alpha$ -closed, $\alpha cl(1_X \setminus A) \leq U$ and hence $1_X \setminus A$ is $f\alpha gr$ -closed in *X* and consequently, *A* is $f\alpha gr$ -open in (X, τ) .

Proposition 2.14. *Every* $fg\alpha$ *-open set is* $f\alpha g$ *-open set in* (X, τ) *.*

Proof. Let *A* be $fg\alpha$ -open in *X*. Then $1_X \setminus A$ is $fg\alpha$ -closed in *X*. Let $U \in \tau$ be such that $1_X \setminus A \leq U$. Then $U \in F\alpha O(X)$ and so $\alpha cl(1_X \setminus A) \leq U$ and so $1_X \setminus A$ is $f\alpha g$ -closed and hence *A* is $f\alpha g$ -open in *X*.

Proposition 2.15.*Let* $f : (X, \tau) \rightarrow (Y, \tau_1)$ *be a fuzzy function. Then the following statements are true :*

- (i) f is fuzzy continuous [3] implies f is $fg\alpha$ -continuous.
- (ii) $fisfwg\alpha$ -continuous implies f is $fw\alpha g$ -continuous.
- (iii) $fisf \alpha gr$ -continuous implies f is f gpr-continuous.

Proof. (i) Let f be fuzzy continuous and $V \in \tau_1$. Then $f^{-1}(V) \in \tau$. Since every fuzzy open set is $fg\alpha$ -open in X (by Proposition 2.5 and Proposition 2.7), $f^{-1}(V)$ is $fg\alpha$ -open in X

and hence *f* is $fg\alpha$ -continuous.

(ii) Let f be $fwg\alpha$ -continuous and $V \in \tau_1$. Then $f^{-1}(V)$ is $fw\alpha g$ -open in X. We claim that $f^{-1}(V)$ is $fwg\alpha$ -open in X. Indeed, let U be any $fwg\alpha$ -open in X. Then $1_X \setminus U$ is $fwg\alpha$ -closed in X. Let $G \in \tau$ be such that $1_X \setminus U \leq G$. Then $G \in F\alpha O(X)$ and as $1_X \setminus U$ is $fwg\alpha$ -closed, $\alpha cl (int (1_X \setminus U)) \leq G$ and so $1_X \setminus U$ is $fw\alpha g$ -closed and hence U is $fw\alpha g$ -open in X. Hence f is $fw\alpha g$ -continuous.

(iii) Let *f* be $f \alpha gr$ -continuous and $V \in \tau_1$. Then $f^{-1}(V)$ is $f \alpha gr$ -open in (X, τ) . Since fuzzy α -open sets are fuzzy preopen, it follows that for any $A \in I^X$, $pcl A \leq \alpha cl A$ and hence *f* is f gpr-continuous.

Definition 2.16. A fuzzy function $f : (X, \tau) \rightarrow (Y, \tau_1)$ is called fuzzy pre- α -closed if $f(\alpha cl A)$ is fuzzy α -closed in (Y, τ_1) , for every fuzzy set A in X.

$3fg^*\alpha$ -CONTINUOUS FUNCTIONS

In this section the concept of $fg^*\alpha$ -continuous function in an fts (X, τ) has been introduced and studied some of its properties and found the relationship of this function with the previously defined functions.

Definition 3.1. A fuzzy function $f : (X, \tau) \to (Y, \tau_1)$ is said to be fuzzy generalized* α -continuous ($fg^*\alpha$ -continuous, for short) if $f^{-1}(V)$ is $fg^*\alpha$ -open in X for every $V \in \tau_1$.

Theorem 3.2. Every fuzzy continuous function $f : (X, \tau) \rightarrow (Y, \tau_1)$ is $fg^*\alpha$ -continuous.

Proof.Let $V \in \tau_1$. Then $f^{-1}(V) \in \tau$. By Proposition 2.5, $f^{-1}(V)$ is $fg^*\alpha$ -open in *X* and hence *f* is $fg^*\alpha$ -continuous.

Remark 3.3. The converse of the above theorem need not be true as seen from the following example.

Example 3.4. $fg^*\alpha$ -continuity \Rightarrow fuzzy continuity

Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}, \tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = 0.4, B(b) = 0.4. Then (X, τ) and (X, τ_1) are fts's. Consider the identity function $i : (X, \tau) \to (X, \tau_1)$. Now $i^{-1}(1_X \setminus B) = 1_X \setminus B$ and 1_X is the only fga-open set in (X, τ) containing $1_X \setminus B$ and so i is fg^*a -continuous. Again, $B \in \tau_1$ and $i^{-1}(B) = B \notin \tau_1$. Hence i is not fuzzy continuous.

Theorem 3.5. *Every fuzzy completely continuous function is f* $g^*\alpha$ *-continuous.*

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be fuzzy completely continuous function and $V \in \tau_1$ be arbitrary. Then $f^{-1}(V) \in FRO(X)$ and hence $f^{-1}(V) \in \tau$ and then by Proposition 2.5, $f^{-1}(V)$ is $fg^*\alpha$ -open in *X*. Consequently, *f* is $fg^*\alpha$ -continuous.

Remark 3.6. The converse of the above theorem need not be true in general as seen from the following example.

Example 3.7. $fg^*\alpha$ -continuity \Rightarrow fuzzy completely continuity Consider Example 3.4. Here *i* is $fg^*\alpha$ -continuous. Now

 $B \in \tau_1$ and $i^{-1}(B) = B \notin FRO(X, \tau)$. Hence *i* is not fuzzy completely continuous.

Theorem 3.8. *Every* $f g^* \alpha$ *-continuous function is* $f g \alpha$ *-continuous.*

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be $fg^*\alpha$ -continuous and $V \in \tau_1$. Then $f^{-1}(V)$ is $fg^*\alpha$ -open in *X*. By Proposition 2.7, $f^{-1}(V)$ is $fg\alpha$ -open in *X* and hence *f* is $fg\alpha$ -continuous.

Remark 3.9. The converse of the above theorem need not be true as seen from the following example.

Example 3.10. $f g \alpha$ -continuity $\Rightarrow f g^* \alpha$ -continuity

Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}, \tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = 0.6, B(b) = 0.4. Then (X, τ) and (X, τ_1) are fts's. Consider the identity function $i : (X, \tau) \rightarrow (X, \tau_1)$. Fuzzy α -open sets in (X, τ) are $0_X, 1_X, A$. Then fuzzy α -closed sets in (X, τ) are $0_X, 1_X, 1_X \setminus A$. Now $fg\alpha$ -closed sets in (X, τ) are $0_X, 1_X, 1_X \setminus A$. Now $fg\alpha$ -closed sets in (X, τ) are $0_X, 1_X, 1_X \setminus A$. Now $fg\alpha$ -closed sets in (X, τ) are $0_X, 1_X, 1_X \setminus W$ where $U \leq A$ and so $fg\alpha$ -open sets in (X, τ) are $0_X, 1_X, 1_X \setminus W$ where $1_X \setminus U \geq 1_X \setminus A$. Now $1_X \setminus B \in \tau_1^c.i^{-1}(1_X \setminus B) = 1_X \setminus B$ which is $fg\alpha$ -closed in (X, τ) . Therefore, i is $fg\alpha$ -copen in (X, τ) and $\alpha cl (1_X \setminus B) = 1_X \setminus A \leq 1_X \setminus B$. Hence i is not $fg^*\alpha$ -continuous.

Theorem 3.11. *Every* $f\alpha$ *-continuous function is* $fg^*\alpha$ *-continuous.*

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be $f \alpha$ -continuous and $V \in \tau_1$. Then $f^{-1}(V) \in F\alpha O(X)$. By Proposition 2.8, $f^{-1}(V)$ is $fg^*\alpha$ -open in (X, τ) and hence f is $fg^*\alpha$ -continuous.

Remark 3.12. The converse of the above theorem need not be true as seen from the following example.

Example 3.13. $fg^*\alpha$ -continuity \Rightarrow $f\alpha$ -continuity

Consider Example 3.4. Here *i* is $fg^*\alpha$ -continuous. Now $B \in \tau_1, i^{-1}(B) = B \notin F\alpha O(X, \tau)$. Hence *i* is not $f\alpha$ -continuous.

Theorem 3.14. *Every* $fg^*\alpha$ *-continuous function is* $f\alpha g$ *-continuous.*

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be $fg^*\alpha$ -continuous and $V \in \tau_1$. Then $f^{-1}(V)$ is $fg^*\alpha$ -open in *X*. By Proposition 2.9, $f^{-1}(V)$ is $f\alpha g$ -open in *X* and hence *f* is $f\alpha g$ -continuous.

Remark 3.15. The converse of the above theorem need not be true as seen from the following example.

Example 3.16. $f \alpha g$ -continuity $\Rightarrow f g^* \alpha$ -continuity

Let $X = \{a\}$, $\tau = \{0_X, 1_X, B\}$, $\tau_1 = \{0_X, 1_X, A\}$ where B(a) = 0.6and $A(a) = \frac{1}{3}$. Then (X, τ) and (X, τ_1) are fts's. Consider the identity function $i : (X, \tau) \to (X, \tau_1)$. We claim that i is $f \alpha g$ continuous but not $fg^* \alpha$ -continuous.

Now fuzzy α -open sets in (X, τ) are $0_X, 1_X, B, U$ where $U(a) \ge 0.6$. Then fuzzy α -closed sets in (X, τ) are $0_X, 1_X, 1_X \setminus B, 1_X \setminus U$ where $(1_X \setminus B)(a) = 0.4, (1_X \setminus U)(a) \le 0.4$. Again $fg\alpha$ -closed sets in (X, τ) are $0_X, 1_X, V$ where $V(a) \le 0.4$ [Indeed, $\alpha cl \ V \le 1_X \setminus B$ whereas $V \le U$]. And so $fg\alpha$ -open sets in (X, τ) are $0_X, 1_X, 1_X \setminus V$ where $(1_X \setminus V)(a) \ge 0.6$. Now $1_X \setminus A \in \tau_1^c$.

IJSER © 2013 http://www.ijser.org Therefore, $i^{-1}(1_X \setminus A) = 1_X \setminus A$ is $fg\alpha$ -open set in (X, τ) . Therefore, $1_X \setminus A \leq 1_X \setminus A$, but $acl(1_X \setminus A) = 1_X \leq 1_X \setminus A$. Therefore, $1_X \setminus A$ is not $fg^*\alpha$ -closed in (X, τ) and so i is not $fg^*\alpha$ -continuous. Again, 1_X is the only fuzzy open set in (X, τ) such that $1_X \setminus A \leq 1_X$.

Proposition 3.17.Let $f : (X, \tau) \to (Y, \tau_1)$ be an $f \alpha g$ -continuous function where (X, τ) is an $f \alpha T_b$ -space. Then f is $f g^* \alpha$ -continuous.

Proof. Let $V \in \tau_1$. As f is $f \alpha g$ -continuous, $f^{-1}(V)$ is $f \alpha g$ -open in (X, τ) . Then $1_X \setminus f^{-1}(V)$ is $f \alpha g$ -closed in (X, τ) . As (X, τ) is $f \alpha T_b$ -space, $1_X \setminus f^{-1}(V)$ is fuzzy closed in (X, τ) and hence $f^{-1}(V)$ is fuzzy open in (X, τ) . By Proposition 2.5, $f^{-1}(V)$ is $f g^* \alpha$ -open in (X, τ) and hence f is $f g^* \alpha$ -continuous.

Theorem 3.18. *Every* $fg^{\#}$ *-continuous function is* $fg^{*}\alpha$ *-continuous.*

Proof.Let $V \in \tau_1$. Then $f^{-1}(V)$ is $fg^{\#}$ -open in (X, τ) . By Proposition 2.10, $f^{-1}(V)$ is $fg^*\alpha$ -open in (X, τ) and hence f is $fg^*\alpha$ -continuous.

Remark 3.19. The converse of the above theorem need not be true as seen from the following example.

Example 3.20. $fg^*\alpha$ -continuity $\Rightarrow fg^{\#}$ - continuity

Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}, \tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.4, A(b) = 0.6, B(a) = 0.5, B(b) = 0.7. Then (X, τ) and (X, τ_1) are fts's. Consider the identity function $i : (X, \tau) \rightarrow (X, \tau_1)$. Now fuzzy α -open sets in (X, τ) are $0_X, 1_X, A, U$ where $U \ge A$ and so fuzzy α -closed sets in (X, τ) are $0_X, 1_X, 1_X \setminus A, 1_X \setminus W$ where $1_X \setminus U \le 1_X \setminus A$. Now $fg\alpha$ -closed sets in (X, τ) are $0_X, 1_X, A, U$. Again, $f\alpha g$ -closed sets in (X, τ) are $0_X, 1_X, A, U$. Again, $f\alpha g$ -closed sets in (X, τ) are $0_X, 1_X, A, U$. Again, $f\alpha g$ -closed sets in (X, τ) are $0_X, 1_X, X, W$ where $V(a) \le 0.4, V(b) \le 0.4$ and W > A. Then $f\alpha g$ -open sets in (X, τ) are $0_X, 1_X, 1_X \setminus V, 1_X \setminus W$ where $1 - V(a) \ge 0.6, 1 - V(b) \ge 0.6$ and $1_X \setminus W < 1_X \setminus A$.

Now $1_X \setminus B \in \tau_1^c$ and $i^{-1}(1_X \setminus B) = 1_X \setminus B$ which is $f \alpha g$ -open set in (X, τ) . But $cl_\tau(1_X \setminus B) = 1_X \setminus A \leq 1_X \setminus B$. Therefore, i is not $fg^{\#}$ -continuous. Again, $U(a) \geq 0.5$, $U(b) \geq 0.6$ are $fg\alpha$ -open sets in (X, τ) containing $1_X \setminus B$ and $\alpha cl_\tau(1_X \setminus B) = 1_X \setminus B \leq U$. Hence i is $fg^*\alpha$ -continuous.

Theorem 3.21. Every $fg^*\alpha$ -continuous function is $fwg\alpha$ -continuous.

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be $fg^*\alpha$ -continuous and $V \in \tau_1$. Then $f^{-1}(V)$ is $fg^*\alpha$ -open in *X*. By Proposition 2.11, $f^{-1}(V)$ is $fwg\alpha$ -open in *X* and hence *f* is $fwg\alpha$ -continuous.

Remark 3.22. The converse of the above theorem need not be true as seen from the following example.

Example 3.23. $fwg\alpha$ -continuity $\Rightarrow fg^*\alpha$ -continuity

Consider Example 3.10. Here $1_X \setminus B$ is $fwg\alpha$ -closed as 1_X is the only fuzzy α -open set in (X, τ) containing $1_X \setminus B$.

Proposition 3.24.Let $f : (X, \tau) \to (Y, \tau_1)$ be an fwg α -continuous function where (X, τ) is an fwg $\alpha T_{g^*\alpha}$ -space. Then f is $fg^*\alpha$ -

continuous.

Proof.Let $V \in \tau_1$. As f is $fwg\alpha$ -continuous, $f^{-1}(V)$ is $fwg\alpha$ open in (X, τ) . As (X, τ) is $fwg\alpha T_{g^*\alpha}$ -space, $1_X \setminus f^{-1}(V)$ is $fg^*\alpha$ closed in (X, τ) and hence $f^{-1}(V)$ is $fg^*\alpha$ -open in (X, τ) . Consequently, f is $fg^*\alpha$ -continuous.

Theorem 3.25. *Every* $fg^*\alpha$ *-continuous function is* $fw\alpha g$ *-continuous.*

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be $fg^*\alpha$ -continuous function. By Theorem 3.21, f is $fwg\alpha$ -continuous. Then by Proposition 2.15(ii), f is $fw\alpha g$ -continuous.

Remark 3.26. The converse of the above theorem need not be true as seen from the following example.

Example 3.27. $fw\alpha g$ -continuity $\Rightarrow fg^*\alpha$ -continuity

Consider Example 3.16. Here $1_X \setminus A \in \tau_1^c$, $i^{-1}(1_X \setminus A) = 1_X \setminus A$. $1_X \setminus A \leq 1_X$ where 1_X is the only fuzzy open set in (X, τ) . Now, $\alpha cl_\tau (int_\tau(1_X \setminus A)) = \alpha cl_\tau B = 1_X \leq 1_X$. Therefore, $1_X \setminus A$ is $fw\alpha g$ -closed in (X, τ) and hence i is $fw\alpha g$ -continuous though it is not $fg^*\alpha$ -continuous.

Theorem 3.28. *Every* $f g^* \alpha$ *-continuous function is* f gs*-continuous.*

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be $fg^*\alpha$ -continuous and $V \in \tau_1$. As f is $fg^*\alpha$ -continuous, $f^{-1}(V)$ is $fg^*\alpha$ -open in (X, τ) . By Proposition 2.12, $f^{-1}(V)$ is fgs-open in (X, τ) and hence f is fgs-continuous.

Remark 3.29. The converse of the above theorem need not be true as seen from the following example.

Example 3.30. fgs-continuity \Rightarrow $fg^*\alpha$ -continuity

Consider Example 3.16. Since 1_X is the only fuzzy open set in (X, τ) such that $1_X \setminus A \leq 1_X$, $scl_{\tau}(1_X \setminus A) \leq 1_X$ and hence $1_X \setminus A$ is *fgs*-closed set in (X, τ) . Hence *i* is *fgs*-continuous.

Proposition 3.31.Let $f : (X, \tau) \to (Y, \tau_1)$ be an fgs-continuous function where (X, τ) is an fT_b -space. Then f is $fg^*\alpha$ -continuous.

Proof.Let $V \in \tau_1$. As f is fgs-continuous, $f^{-1}(V)$ is fgs-open in (X, τ) . Then $1_X \setminus f^{-1}(V)$ is fuzzy closed in (X, τ) . Hence $f^{-1}(V)$ is fuzzy open in (X, τ) . By Proposition 2.5, $f^{-1}(V)$ is $fg^*\alpha$ -open in (X, τ) and hence f is $fg^*\alpha$ -continuous.

Theorem 3.32. Every $fg^*\alpha$ -continuous function is $f\alpha gr$ -continuous.

Proof.Let $f : (X, \tau) \to (Y, \tau_1)$ be $fg^*\alpha$ -continuous and $V \in \tau_1$. Then $f^{-1}(V)$ is $fg^*\alpha$ -open in (X, τ) . By Proposition 2.13, $f^{-1}(V)$ is $f\alpha gr$ -open in (X, τ) . Hence f is $f\alpha gr$ -continuous.

Remark 3.33. The converse of the above theorem need not be true as seen from the following example.

Example 3.34. $f \alpha gr$ -continuity \Rightarrow $f g^* \alpha$ -continuity Consider Example 3.16. The only fuzzy regular open sets in (X, τ) are $0_X, 1_X$. Therefore, $1_X \setminus A \le 1_X \Rightarrow \alpha c l_\tau (1_X \setminus A) = 1_X \le 1_X \Rightarrow 1_X \setminus A$ is $f \alpha g r$ -closed in (X, τ) . Hence *i* is $f \alpha g r$ -continuous though it is not $f g^* \alpha$ -continuous.

Theorem 3.35. Every $fg^*\alpha$ -continuous function is fgpr-continuous.

Proof. By Theorem 3.32, every $fg^*\alpha$ -continuous function is $f\alpha gr$ -continuous and again by Proposition 2.5(iii), it is fgpr-continuous.

Remark 3.36. The converse of the above theorem need not be true as seen from the following example.

Example 3.37. fgpr-continuity \Rightarrow $fg^*\alpha$ -continuity

Consider Example 3.16. The only fuzzy regular open setss in (X, τ) are $0_X, 1_X$. Now $1_X \setminus A \leq 1_X \Rightarrow pcl_{\tau}(1_X \setminus A) = 1_X \leq 1_X \Rightarrow 1_X \setminus A$ is fgpr-closed in (X, τ) and hence i is fgpr-continuous though it is not $fg^*\alpha$ -continuous.

Theorem 3.38. If a fuzzy function $f : (X, \tau) \to (Y, \tau_1)$ is $f \alpha$ -*irresolute, then it is* $fg^* \alpha$ *-continuous.*

Proof.Let $V \in \tau_1$. Then $V \in FaO(Y)$. As f is $f\alpha$ -irresolute, $f^{-1}(V) \in FaO(X)$. By Proposition 2.8, $f^{-1}(V)$ is $fg^*\alpha$ -open in (X, τ) and hence f is $fg^*\alpha$ -continuous.

Remark 3.39. The converse of the above theorem need not be true as seen from the following example.

Example 3.40. $fg^*\alpha$ -continuity \Rightarrow $f\alpha$ - continuity

Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}, \tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = 0.4, B(b) = 0.4. Then (X, τ) and (X, τ_1) are fts's. Consider the identity function $i : (X, \tau) \to (X, \tau_1)$. Now $i^{-1}(1_X \setminus B) = 1_X \setminus B$ and 1_X is the only fga-open set in (X, τ) containing $1_X \setminus B$ and so i is fg^*a -continuous. Now $1_X \setminus B$ is fuzzy semiopen set in (X, τ_1) and $i^{-1}(1_X \setminus B) = 1_X \setminus B$ which is not fuzzy semiopen in (X, τ) . Hence i is not fa-irresolute.

Note 3.41. The following two examples show that fuzzy semicontinuity and $fg^*\alpha$ -continuity are independent notions.

Example 3.42. *fuzzy semi-continuity* \Rightarrow $fg^*\alpha$ *-continuity*

Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}, \tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = 0.5, B(b) = 0.5. Then (X, τ) and (X, τ_1) are fts's. Consider the identity function $i : (X, \tau) \to (X, \tau_1)$. Then fuzzy α -open sets in (X, τ) are $0_X, 1_X, A$ and fuzzy α -closed sets in (X, τ) are $0_X, 1_X, A$ fuzzy semiopen sets in (X, τ) are $0_X, 1_X, A$ and fuzzy α -closed sets in (X, τ) are $0_X, 1_X, A$, fuzzy semiopen sets in (X, τ) are $0_X, 1_X, A, V$ where $A \leq V \leq 1_X \setminus A$. $fg\alpha$ -closed sets in (X, τ) are $0_X, 1_X, A, V$ where $U \leq A, fg\alpha$ -open sets in (X, τ) are $0_X, 1_X, A, 1_X \setminus W$ where $1_X \setminus U \geq 1_X \setminus A$. Now $i^{-1}(B) = B$ which is fuzzy semiopen in (X, τ) and so i is fuzzy semicontinuous. Again, $1_X \setminus B$ is $fg\alpha$ -open set such that $B = 1_X \setminus B \leq 1_X \setminus B$. But $\alpha cl_\tau(1_X \setminus B) = \alpha cl_\tau B = 1_X \setminus A \leq 1_X \setminus B$. Therefore, $1_X \setminus B$ is not $fg^*\alpha$ -closed and so B is not $fg^*\alpha$ -open in (X, τ) and hence i is not $fg^*\alpha$ -continuous.

Consider Example 3.40. Here *B* is fuzzy semiopen in (X, τ_1) . But $i^{-1}(B) = B \notin FSO(X, \tau)$. Therefore, *i* is $fg^*\alpha$ -continuous but not fuzzy semi-continuous.

Remark 3.44. The following two examples show that fg-continuous function and $fg^*\alpha$ -continuous function are independent notions.

Example 3.45.*f g*-continuity \Rightarrow *f g*^{*} α -continuity

Consider Example 3.16. Since 1_X is the only fuzzy open set such that $1_X \setminus A \leq 1_X$. Then $cl_\tau(1_X \setminus A) = 1_X$ and so $1_X \setminus A$ is fg-closed in (X, τ) and so A is fg-open set in (X, τ) . Hence i is fg-continuous though it is not $fg^*\alpha$ -continuous.

Example 3.46. $fg^*\alpha$ -continuity \Rightarrow fg-continuity

Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A\}$, $\tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.4, A(b) = 0.6, B(a) = 0.7, B(b) = 0.6. Then (X, τ) and (X, τ_1) are fts's. Consider the identity function $i : (X, \tau) \to (X, \tau_1)$. Now $1_X \setminus B \in \tau_1^c$. Then $i^{-1}(1_X \setminus B) = 1_X \setminus B$. Now any fga-open set in (X, τ) other than 0_X contains $1_X \setminus B$ and $\alpha cl_\tau(1_X \setminus B) = 1_X \setminus B$ and hence i is $fg^* \alpha$ -continuous. But $1_X \setminus B \leq A$ and $cl_\tau(1_X \setminus B) = 1_X \setminus A$ and so i is not fg-continuous.

Theorem 3.47.*A* fuzzy function $f : (X, \tau) \to (Y, \tau_1)$ is $fg^*\alpha$ continuous iff the inverse image of every fuzzy closed set in Y is $fg^*\alpha$ -closed in X.

Proof. Let f be $fg^*\alpha$ -continuous and $F \in \tau_1^c$. Then $1_X \setminus F \in \tau_1$. Since f is $fg^*\alpha$ -continuous, $f^{-1}(1_X \setminus F) = 1_X \setminus f^{-1}(F)$ is $fg^*\alpha$ -open in X. Hence $f^{-1}(F)$ is $fg^*\alpha$ -closed in X.

Conversely, let us suppose that $f^{-1}(F)$ be $fg^*\alpha$ -closed in X for every fuzzy closed set F in Y. Let $V \in \tau_1$. Then $1_X \setminus V \in \tau_1^c$. By assumption, $f^{-1}(1_Y \setminus V) = 1_X \setminus f^{-1}(V)$ is $fg^*\alpha$ -closed in X and so $f^{-1}(V)$ is $fg^*\alpha$ -open in X and hence f is $fg^*\alpha$ -continuous.

Theorem 3.48.Let $f : (X, \tau) \to (Y, \tau_1)$ be an $fg\alpha$ -continuous, f-pre-a-closed function, then f(A) is $f\alpha g$ -closed in (Y, τ_1) for every $fg^*\alpha$ -closed set Ain (X, τ) .

Proof. Let *A* be an $fg^*\alpha$ -closed set in *X* and $V \in \tau_1$ be such that $f(A) \leq V$. Then $A \leq f^{-1}(V)$. As *f* is $fg\alpha$ -continuous, $f^{-1}(V)$ is $fg\alpha$ -open in (X, τ) . Since *A* is $fg^*\alpha$ -closed, and $A \leq f^{-1}(V)$, $\alpha cl_{\tau}A \leq f^{-1}(V) \Rightarrow f(\alpha cl_{\tau}A) \leq ff^{-1}(V) \leq V$. Since *f* is *f*-pre- α -closed, $f(\alpha cl_{\tau}A)$ is fuzzy α -closed in (Y, τ_1) . Therefore, $\alpha cl_{\tau_1}(f(\alpha cl_{\tau}A)) = f(\alpha cl_{\tau}A) \leq V$. Now, $A \leq \alpha cl_{\tau}A \Rightarrow f(A) \leq f(\alpha cl_{\tau}A) \Rightarrow \alpha cl_{\tau_1}(f(A)) \leq \alpha cl_{\tau_1}(f(\alpha cl_{\tau}A)) = f(\alpha cl_{\tau}A) \leq V$. Hence f(A) is $f\alpha g$ -closed in (Y, τ_1) .

Theorem 3.49.Let $f : (X, \tau) \to (Y, \tau_1)$ be fuzzy continuous, fuzzy pre-a-closed function, then f(A) is $f \alpha g$ -closed in (Y, τ_1) for every $f g^* \alpha$ -closed set Ain (X, τ) .

Proof. Combining Theorem 3.2 and Theorem 3.8, we say that *f* is $fg\alpha$ -continuous. Then by Theorem 3.48, f(A) is $f\alpha g$ -closed for every $fg^*\alpha$ -closed set *A*in *X*.

Example 3.43. $f g^* \alpha$ -continuity \Rightarrow fuzzy semi-continuity

Theorem 3.50.Let $f : (X, \tau) \to (Y, \tau_1)$ be an $fg\alpha$ -continuous, f-

pre-a-closed function and (Y, τ_1) is an $f \alpha T_b$ -space, then f(A) is $fg^*\alpha$ -closed in (Y, τ_1) for every $fg^*\alpha$ -closed set Ain (X, τ) .

Proof. Let *A* be $fg^*\alpha$ -closed in (X, τ) and *V* be any $fg\alpha$ -open set in *Y* such that $f(A) \leq V$. By Proposition 2.14, *V* is $f\alpha g$ -open in *Y*. Since (Y, τ_1) is $f\alpha T_b$ -space, $1_X \setminus V$ being $f\alpha g$ -closed in (Y, τ_1) is fuzzy closed in (Y, τ_1) and so *V* is fuzzy open in (Y, τ_1) . As *f* is $fg\alpha$ -continuous, $f^{-1}(V)$ is $fg\alpha$ -open in (X, τ) . Since *A* is $fg^*\alpha$ -closed in (X, τ) and $A \leq f^{-1}(V)$, $\alpha cl_\tau A \leq f^{-1}(V) \Rightarrow f(\alpha cl_\tau A) \leq ff^{-1}(V) \leq V$. Since *f* is *f*-pre- α -closed, $f(\alpha cl_\tau A) = f(\alpha cl_\tau A) \leq V$ and so $\alpha cl_{\tau_1}(f(\alpha cl_\tau A)) \leq V$. Consequently, f(A) is $fg^*\alpha$ -closed in (Y, τ_1) .

Remark 3.51. The composition of two $fg^*\alpha$ -continuous functions need not be $fg^*\alpha$ -continuous function as seen from the following example.

Example 3.52.Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A\}$, $\tau' = \{0_X, 1_X\}$, $\tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = 0.6, B(b) = 0.4. Then (X, τ) , (X, τ') and (X, τ_1) are fts's. Consider two identity functions $i : (X, \tau) \rightarrow (X, \tau')$ and $i_1 : (X, \tau') \rightarrow (X, \tau_1)$. Then clearly i and i_1 are $fg^*\alpha$ -continuous. But $i_1 o \ i : (X, \tau) \rightarrow (X, \tau_1)$ is not $fg^*\alpha$ -continuous as seen from Example 3.10.

Theorem 3.53.Let $f : (X, \tau) \to (Y, \tau_1)$ and $g : (Y, \tau_1) \to (Z, \tau_2)$ be two $fg^*\alpha$ -continuous functions where (Y, τ_1) is $fg^*\alpha T_c$ -space. Then their composition $g \circ f : (X, \tau) \to (Z, \tau_2)$ is an $fg^*\alpha$ -continuous function.

Proof.Let $V \in \tau_2$. Then $g^{-1}(V)$ is $fg^*\alpha$ -open in (Y,τ_1) . As (Y,τ_1) is $fg^*\alpha T_c$ -space, $1_Y \setminus g^{-1}(V)$ is fuzzy closed in (Y,τ_1) and so $g^{-1}(V)$ is fuzzy open in (Y,τ_1) . Again, as f is $fg^*\alpha$ -continuous, $f^{-1}(g^{-1}(V))$ is $fg^*\alpha$ -open in (X, τ) and so $(gof)^{-1}(V) = f^{-1}(g^{-1}(V))$ for every $V \in \tau_2$. Consequently, gof is $fg^*\alpha$ -continuous.

Theorem 3.54.Let $f : (X, \tau) \to (Y, \tau_1)$ be an $f \alpha$ -irresolute function and $g : (Y, \tau_1) \to (Z, \tau_2)$ be an $f g^* \alpha$ -continuous function in (Y, τ_1) which is $f g^* \alpha T_{\alpha}$ -space, then the composition $gof : (X, \tau) \to (Z, \tau_2)$ is $f \alpha$ -continuous.

Proof. Let $V \in \tau_2$. As g is $fg^*\alpha$ -continuous, $g^{-1}(V)$ is $fg^*\alpha$ -openin (Y, τ_1) . Since (Y, τ_1) is $fg^*\alpha T_\alpha$ -space, $1_X \setminus g^{-1}(V)$ is fuzzy α -closed in (Y, τ_1) and so $, g^{-1}(V)$ is fuzzy α -open in (Y, τ_1) . Since f is $f\alpha$ -irresolute, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in FaO(X)$. Hence gof is $f\alpha$ -continuous.

Definition 3.55.For a fuzzy set *A* in an fts (*X*, τ), $fg^*\alpha clA = \land \{B : A \leq B, B \text{ is } fg^*\alpha \text{-closed in } (X, \tau)\}.$

Result 3.56. It is clear from Definition 3.56 that $fg^*\alpha clA = A$ for any $fg^*\alpha$ -closed set *A* in an fts (*X*, τ).

Theorem 3.57.Let $f : (X, \tau) \to (Y, \tau_1)$ be an $fg^*\alpha$ -continuous function. Then for any $A \in I^X$, $f(fg^*\alpha cl_\tau A) \leq cl_{\tau_1}f(A)$.

Proof. Let $A \in l^X$. Then $cl_{\tau_1}f(A) \in \tau_1^c$ and as f is $fg^*\alpha$ continuous, $f^{-1}(cl_{\tau_1}f(A))$ is $fg^*\alpha$ -closed in (X,τ) . Hence by Result 3.57, $fg^*\alpha cl_{\tau}(f^{-1}(cl_{\tau_1}f(A))) = f^{-1}(cl_{\tau_1}f(A))$. Now $f(A) \leq cl_{\tau_1}f(A) \Rightarrow A \leq f^{-1}f(A) \leq f^{-1}(cl_{\tau_1}f(A))$. Therefore, $f^{-1}(cl_{\tau_1}f(A))$ being a $fg^*\alpha$ -closed set containing A. Then $fg^*\alpha cl_{\tau}A \leq f^{-1}(cl_{\tau_1}f(A))$. Therefore, $f(fg^*\alpha cl_{\tau}A) \leq cl_{\tau_1}f(A)$.

Corollary 3.58.Let $f : (X, \tau) \to (Y, \tau_1)$ be a fuzzy continuous function. Then for any $A \in I^X$, $f(fg^*\alpha cl_\tau A) \leq cl_{\tau_1}f(A)$.

Proof. The proof follows from the fact that every fuzzy continuous function is $fg^*\alpha$ -continuous and from Theorem 3.57.

4 $fg^*\alpha$ -OPEN FUNCTIONS AND $fg^*\alpha$ -CLOSED FUNCTIONS

In this section two new types of functions viz. $fg^*\alpha$ -open function and $fg^*\alpha$ -closed function have been introduced and studied and found the relationship of these two functions with fuzzy open function and fuzzy closed function.

Definition 4.1. A function $f : (X, \tau) \to (Y, \tau_1)$ is said to be $fg^*\alpha$ -open function if the image of every fuzzy open set in (X, τ) is $fg^*\alpha$ -open in (Y, τ_1) .

Definition 4.2. A function $f : (X, \tau) \to (Y, \tau_1)$ is said to be $fg^*\alpha$ closed function if the image of every fuzzy closed set in (X, τ) is $fg^*\alpha$ -closed in (Y, τ_1) .

Theorem 4.3. *Every fuzzy open function is f* $g^*\alpha$ *-open.*

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be a fuzzy open function and $V \in \tau$. Then f(V) is fuzzy open set in (Y, τ_1) . By Proposition 2.5, f(V) is $fg^*\alpha$ -open in (Y, τ_1) and hence f is $fg^*\alpha$ -open function.

Remark 4.4. The converse of the above theorem need not be true as seen from the following example.

Example 4.5. $f g^* \alpha$ -open function \Rightarrow fuzzy open function

Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}, \tau_1 = \{0_X, 1_X, B\}$ where A(a) = 0.4, A(b) = 0.6, B(a) = 0.5, B(b) = 0.7. Then (X, τ) and (X, τ_1) are fts's. Consider the identity function $i : (X, \tau_1) \rightarrow (X, \tau)$. Then i(B) = B. We claim that B is $fg^*\alpha$ -open in (X, τ) . Now 1 - B(a) = 0.5, 1 - B(b) = 0.3. As in Example 3.20, $U \ge 1_X \setminus B$, for all $fg\alpha$ -open sets U in (X, τ) and $\alpha cl_\tau(1_X \setminus B) = 1_X \setminus B \le U$ and hence $1_X \setminus B$ is $fg^*\alpha$ -closed in (X, τ) and so B is $fg^*\alpha$ -open in (X, τ) . Consequently, i is $fg^*\alpha$ -open function. But $B \notin \tau$ and hence i is not fuzzy open function.

Theorem 4.6. *Every fuzzy closed function is* $fg^*\alpha$ *-closed.*

Proof. Let $f : (X, \tau) \to (Y, \tau_1)$ be a fuzzy closed function and $V \in \tau^c$. Then $f(V) \in \tau_1^c$. By Proposition 2.5, f(V) is $fg^*\alpha$ -closed and hence f is $fg^*\alpha$ -closed function.

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 ISSN 2229-5518

Remark 4.7. The converse of the above theorem need not be true as seen from the following example.

Example 4.8. $f g^* \alpha$ -closed function \Rightarrow fuzzy closed function

Consider Example 4.5. Here $1_X \setminus B \in \tau_1^c$ and so $i(1_X \setminus B) = 1_X \setminus B$ which is $fg^*\alpha$ -closed in (X, τ) but is not fuzzy closed in (X, τ) . Hence i is $fg^*\alpha$ -closed function though it is not fuzzy closed function.

Theorem 4.9.*A function* $f : (X, \tau) \to (Y, \tau_1)$ *is* $f g^* \alpha$ *-closed iff for each* $B \in I^Y$ *and for each* $G \in \tau$ *with* $f^{-1}(B) \leq G$ *, there exists an* $f g^* \alpha$ *-open set* F *in* Y *such that* $B \leq F$ *,* $f^{-1}(F) \leq G$ *.*

Proof. Let $B \in I^{\gamma}$ and $G \in \tau$ be such that $f^{-1}(B) \leq G$. Then $1_X \setminus G \in \tau^c$. As f is $fg^* \alpha$ -closed function, $f(1_X \setminus G)$ is $fg^* \alpha$ -closed in Y. Let $F = 1_Y \setminus f(1_X \setminus G)$. Then F is $fg^* \alpha$ -open in Y. Now $1_X \setminus G \leq 1_X \setminus f^{-1}(B) = f^{-1}(1_Y \setminus B)$. Therefore, $f(1_X \setminus G) \leq ff^{-1}(1_Y \setminus B) \leq 1_Y \setminus B$ and so $1_Y \setminus f(1_X \setminus G) \geq B \Rightarrow B \leq F$ and $f^{-1}(F) = f^{-1}(1_Y \setminus f(1_X \setminus G)) = 1_X \setminus f^{-1}f(1_X \setminus G) \Rightarrow 1_X \setminus G \leq f^{-1}f(1_X \setminus G)$. Therefore, $\geq 1_X \setminus f^{-1}f(1_X \setminus G) = f^{-1}(F) \Rightarrow f^{-1}(F) \leq G$.

Conversely, let $U \in \tau^c$. Then $1_X \setminus U \in \tau$. Now $f^{-1}(1_Y \setminus f(U)) = 1_X \setminus f^{-1}f(U)$. Since, $U \leq f^{-1}f(U)$, $1_X \setminus f^{-1}f(U) \leq 1_X \setminus U$. Therefore, $f^{-1}(1_Y \setminus f(U)) \leq 1_X \setminus U$, where $1_Y \setminus f(U) \in I^Y$. Then there exists an $fg^* \alpha$ -open set F in Y such that $1_Y \setminus f(U) \leq F$ and $f^{-1}(F) \leq 1_X \setminus U$. Therefore, $U \leq 1_X \setminus f^{-1}(F)$. Hence $1_Y \setminus F \leq f(U) \leq f(1_X \setminus f^{-1}(F)) \leq 1_Y \setminus F \Rightarrow f(U) = 1_Y \setminus F$ and so f(U) is $fg^* \alpha$ -closed in Y. Consequently, f is $fg^* \alpha$ -closed function.

Theorem 4.10.*The function* $f : (X, \tau) \to (Y, \tau_1)$ *is fuzzy closed function and* $g : (Y, \tau_1) \to (Z, \tau_2)$ *isf* $g^* \alpha$ *-closed function, then their composition* $g \circ f : (X, \tau) \to (Z, \tau_2)$ *is* $f g^* \alpha$ *-closed function.*

Proof.Let $G \in \tau^c$. Then as f is fuzzy closed function, $f(G) \in \tau_1^c$. As g is $fg^*\alpha$ -closed function, g(f(G)) = (gof)(G) is $fg^*\alpha$ -closed in (Z, τ_2) . Consequently, gof is $fg^*\alpha$ -closed function.

Theorem 4.11. Let $f : (X, \tau) \to (Y, \tau_1)$ and $g : (Y, \tau_1) \to (Z, \tau_2)$ be such that their composition $g \circ f : (X, \tau) \to (Z, \tau_2)$ is an $fg^*\alpha$ closed function. Then the following statements are true :

- (i) If f is fuzzy surjective continuous, then g is $fg^*\alpha$ -closed function.
- (ii) If f is fuzzy surjective $fg\alpha$ -continuous and (X,τ) is an $f\alpha T_b$ -space, then g is $fg^*\alpha$ -closed function.
- (iii) If g is $f g^* \alpha$ -continuous and injective, then f is fuzzy closed function.

Proof. (i) Let $V \in \tau_1^c$. Since f is fuzzy continuous, $f^{-1}(V) \in \tau^c$. Since gof is $fg^*\alpha$ -closed function, $(gof)(f^{-1}(V))$ is $fg^*\alpha$ -closed set in Z. As f is surjective, $(gof)(f^{-1}(V)) = g(f(f^{-1}(V))) = g(V)$, proving that g is $fg^*\alpha$ -closed function.

(ii)Let $V \in \tau_1^c$. Since f is $fg\alpha$ -continuous, $f^{-1}(V)$ is $fg\alpha$ closed in X. By Proposition 2.14, $f^{-1}(V)$ is $f\alpha g$ -closed in X. As (X, τ) is an $f\alpha T_b$ -space, $f^{-1}(V)$ is fuzzy closed in X. As gof is $fg^*\alpha$ -closed function, $(gof)(f^{-1}(V)) = g(V)$ (as f is surjective) is $fg^*\alpha$ -closed set in Z. Hence g is $fg^*\alpha$ -closed function.

(iii)Let $V \in \tau^c$. Since gof is $fg^*\alpha$ -closed function, (gof)(V) =

g(f(V)) is $fg^*\alpha$ -closed in *Z*. Since *g* is $fg^*\alpha$ -continuous and injective, $g^{-1}(gof)(V) = g^{-1}g(f(V)) = f(V)$ is fuzzy closed in *Y*. Hence *f* is fuzzy closed function.

Theorem 4.12. If $f : (X, \tau) \to (Y, \tau_1)$ is $fg^* \alpha$ -closed function, then $fg^* \alpha cl_{\tau_1}(f(U)) \leq f(cl_{\tau}(U))$, for every $U \in I^X$.

Proof.Let $U \in I^X$. Then $cl_\tau U \in \tau^c$. Since f is $fg^*\alpha$ -closed, $f(cl_\tau U)$ is $fg^*\alpha$ -closed set in Y. As $U \leq cl_\tau U$, $f(U) \leq f(cl_\tau U)$, by Definition 3.55, $fg^*\alpha cl_{\tau_1}(f(U)) \leq f(cl_\tau(U))$.

REFERENCES

- K.K. Azad, "On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity," J. Math. Anal. Appl., 82pp. 14-32, 1981.
- [2] A.S. Bin Shahna, " On fuzzy strong semicontinuity and fuzzy precontinuity," *Fuzzy Sets and Systems*, 44 pp. 303-308, 1991.
- [3] C.L.Chang, "Fuzzy topological spaces," J. Math. Anal. Appl., 24 pp. 182-190, 1968.
- [4] M.A. FathAlla, "α-continuous mappings in fuzzy topological spaces,"Bull. Cal. Math. Soc., 80 pp. 323-329, 1988.
- [5] A.S. Mashhour, M.H. Ghanim and M.A. FathAlla, "On fuzzy noncontinuous mappings," *Bull. Cal.Math. Soc.*, 78 pp. 57-69, 1986.
- [6] L.A. Zadeh, "Fuzzy Sets," Inform. Control, 8 pp. 338-353, 1965.

