$f g^{*} \alpha$-Continuous Functions In Fuzzy Topological Spaces

Anjana Bhattacharyya

Abstract

This paper deals with several types of fuzzy generalized closed sets and their interrelations. Also $f g^{*} \alpha-$-continuous, $f g^{*} \alpha-$ open functions and $f g^{*} \alpha$-closed functions are introduced and studied. Again, some important properties of such functions are studied in the newly defined spaces using $f g^{*} \alpha$-closed sets.

Index Terms— $f g^{*} \alpha$-open sets, $f g^{*} \alpha$-closed sets, $f g^{*} \alpha$-continuity, $f g^{*} \alpha$-open functions, $f g^{*} \alpha$-closed functions, $f g^{*} \alpha T_{\alpha}$-space, $f g^{*} \alpha T_{c}$ space.

1 Introduction

T$\urcorner_{\text {HROUGHOUT }}$ the paper, by $(X, \tau),\left(Y, \tau_{1}\right),\left(Z, \tau_{2}\right)$ or simply by X, Y, Z respectively we mean fuzzy topological spaces (fts, for short) in the sense of Chang [3]. A fuzzy set is a mapping from a nonempty set X to the unit closed interval $I=[0,1][6] .0_{X}, 1_{X}$ are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement of a fuzzy set A in X will be denoted by $1_{X} \backslash A$. The two fuzzy sets A and B in X, we write $A \leq B$ if and only if $A(x) \leq B(x)$, for all $x \in X$. $c l A a n d i n t A$ of a fuzzy set A in X [6] respectively stand for the fuzzy closure and fuzzy interior of A in X.

$2 \boldsymbol{f} \boldsymbol{g}^{*} \boldsymbol{\alpha}$-OPEN SETS AND ITS PROPERTIES

We now recall the following definitions, which are useful in the sequel.

Definition 2.1. A fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called fuzzy
(i) semiopen [1] if $A \leq c l$ int A
(ii) a-open [2] if $A \leq \operatorname{int} \mathrm{cl} \operatorname{int} A$
(iii) regular open [1] if $A=\operatorname{int} c l A$
(iv) preopen [5] if $A \leq$ int $\operatorname{cl} A$

The set of all fuzzy semiopen (resp. fuzzy a-open, fuzzy regular open, fuzzy preopen) sets in X is denoted by $\mathrm{FSO}(\mathrm{X})$ (resp. $\mathrm{FaO}(X), \mathrm{FRO}(X), \mathrm{FPO}(\mathrm{X})$).
The complements of the above mentioned sets are called fuzzy semiclosed sets, fuzzy a-closed sets, fuzzy regular closed sets and fuzzy preclosed sets respectively.
Fuzzy semiclosure [1] (resp., fuzzy a-closure [2], fuzzy preclosure [5]) of a fuzzy set A in X, denoted by scl A (resp. $\alpha c l A, p c l A$) is defined to be the intersection of all fuzzy semiclosed (resp., fuzzy a-closed, fuzzy preclosed) sets containing A. It is known that $\operatorname{scl} A$ (resp. $\alpha c l A, p c l A$) is a fuzzy semiclosed (resp., fuzzy a-closed, fuzzy preclosed) set.

Definition 2.2. A fuzzy set A in an $\mathrm{fts}(X, \tau)$ is called fuzzy
(i) generalized closed ($f g$-closed, for short) if $\operatorname{cl} A \leq U$ whenever $A \leq U$ and $U \in \tau$,
(ii) semi-generalized closed ($f s g$-closed, for short) if scl $A \leq U$ whenever $A \leq U$ and $U \in \mathrm{FSO}(\mathrm{X})$,

[^0](iii) generalized semiclosed (fgs-closed, for short) if $\operatorname{scl} A \leq U$ whenever $A \leq U$ and $U \in \tau$,
(iv) generalized a-closed ($f g \alpha$-closed, for short) if $\alpha c l A \leq U$ whenever $A \leq U$ and $U \in \mathrm{FaO}(\mathrm{X})$,
(v) a-generalized closed ($f \alpha g$-closed, for short) if $\alpha c l A \leq U$ whenever $A \leq U$ and $U \in \tau$,
(vi) $\quad g^{\#}$-closed $\left(f g^{\#}\right.$-closed, for short) if $c l A \leq U$ whenever $A \leq U$ and U is $f \alpha g$-open in (X, τ),
(vii) $w g \alpha$-closed (fwg α-closed, for short) if $\alpha c l(\operatorname{int} A) \leq U \quad$ whenever $A \leq U \quad$ and $\quad U \in$ $\mathrm{FaO}(\mathrm{X})$,
(viii) $w \alpha g$-closed (fwag-closed, for short) if $\alpha c l($ int $A) \leq U$ whenever $A \leq U$ and $U \in \tau$,
(ix) $\quad g^{*} \alpha$-closed $\left(f g^{*} \alpha\right.$-closed, for short) if $\alpha c l A \leq U$ whenever $A \leq U$ and U is $f g \alpha$-open in (X, τ),
(x) $\quad \alpha g r$-closed ($f \alpha g r$-closed, for short) if $\alpha c l A \leq U$ whenever $A \leq U$ and $U \in \operatorname{FRO}(\mathrm{X})$,
(xi) $\quad g p r$-closed (fgpr-closed, for short) if $p c l A \leq U$ whenever $A \leq U$ and $U \in \mathrm{FRO}(\mathrm{X})$.
The complements of the above mentioned sets are called their respective open sets.

Definition 2.3. An $\mathrm{fts}(X, \tau)$ is called an
(i) $\quad f T_{b}$-space if every $f g s$-closed set in (X, τ) is fuzzy closed in (X, τ),
(ii) $f \alpha T_{b}$-space if every $f \alpha g$-closed set in (X, τ) is fuzzy closed in (X, τ),
(iii) $f g^{*} \alpha T_{c}$-space if every $f g^{*} \alpha$-closed set in (X, τ) is fuzzy closed in (X, τ),
(iv) $\quad f g^{*} \alpha T_{\alpha}$-space if every $f g^{*} \alpha$-closed set in (X, τ) is fuzzy a-closed in (X, τ),
(v) $\quad f w g \alpha T_{g^{*} \alpha}$-space if every $f w g \alpha$-closed set $\mathrm{n}(X, \tau)$ is $f g^{*} \alpha$-closed in (X, τ).

Definition 2.4. A function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is called fuzzy
(i) α-continuous [4] ($f \alpha$-continuous, for short) if $f^{-1}(V) \in \mathrm{FaO}(\mathrm{X})$ for every $V \in \tau_{1}$,
(ii) semicontinuous [1] ($f s$-continuous, for short) if $f^{-1}(V) \in \operatorname{FSO}(\mathrm{X})$ for every $V \in \tau_{1}$, g-continuous ($f g$-continuous, for short) if $f^{-1}(V)$ is fuzzy g-open in (X, τ) for every $V \in \tau_{1}$,
(iv) $s g$-continuous ($f s g$-continuous, for short) if $f^{-1}(V)$ is $f s g$-open in (X, τ) for every $V \in \tau_{1}$, $g s$-continuous (fgs-continuous, for short) if
$f^{-1}(V)$ is $f g s$-open in (X, τ) for every $V \in \tau_{1}$, $f^{-1}(V)$ is $f g \alpha$-open in (X, τ) for every $V \in \tau_{1}$,
(vii) αg-continuous (f αg-continuous, for short) if $f^{-1}(V)$ is $f \alpha g$-open in (X, τ) for every $V \in \tau_{1}$,
(viii) Completely continuous if $f^{-1}(V) \in \operatorname{FRO}(X)$ for every $V \in \tau_{1}$,
(ix) $\quad \alpha$-irresolute ($f \alpha$-irresolute, for short) if $f^{-1}(V) \in$ $\mathrm{FaO}(\mathrm{X})$ for every $V \in \mathrm{FaO}(\mathrm{Y})$,
(x) $\quad w g \alpha$-continuous ($f w g \alpha$-continuous, for short) if $f^{-1}(V)$ is $f w g \alpha$-open in (X, τ) for every $V \in \tau_{1}$,
(xi) $\quad w \alpha g$-continuous ($f w \alpha g$-continuous, for short) if $f^{-1}(V)$ is $f w \alpha g$-open in (X, τ) for every $V \in \tau_{1}$,
(xii) $g^{\#}$-continuous ($f g^{\#}$-continuous, for short) if $f^{-1}(V)$ is $f g^{\#}$-open in (X, τ) for every $V \in \tau_{1}$,
(xiii) $g p r$-continuous (fgpr-continuous, for short) if $f^{-1}(V)$ is $f g p r$-open in (X, τ) for every $V \in \tau_{1}$,
(xiv) $\alpha g r$-continuous (fagr-continuous, for short) if $f^{-1}(V)$ is $f \alpha g r$-open in (X, τ) for every $V \in \tau_{1}$.

Proposition 2.5. Every fuzzy open set V in an fts (X, τ) is $f g^{*} \alpha$ open in (X, τ).

Proof. Let $V \in \tau$ be arbitrary. Then $1_{X} \backslash V \in \tau^{c}$. Let $1_{X} \backslash V \leq G$ where G is $f g \alpha$-open in (X, τ). Then $\alpha c l\left(1_{X} \backslash V\right) \leq c l\left(1_{X} \backslash V\right)=$ $1_{X} \backslash V \leq G$. Therefore, $1_{X} \backslash V$ is $f g^{*} \alpha$-closed in (X, τ) and hence V is $f g^{*} \alpha$-open in (X, τ).

Proposition 2.6.Every fuzzy regular open set in an $\operatorname{fts}(X, \tau)$ is $f g^{*} \alpha$-open in (X, τ).

Proof. Since every fuzzy regular open set is fuzzy open, the proof follows from Proposition 2.5.

Proposition 2.7.Every $f g^{*} \alpha$-open set in an $f t s(X, \tau)$ is $f g \alpha$-open in (X, τ).

Proof. Let V be $f g^{*} \alpha$-open set in (X, τ). Then $1_{X} \backslash V$ is $f g^{*} \alpha-$ closed in (X, τ). Let $U \in \mathrm{FaO}(\mathrm{X})$ be such that $1_{X} \backslash V \leq U$. Then U is fuzzy $f g \alpha$-open in (X, τ). Indeed, $1_{X} \backslash U$ is fuzzy a-closed in (X, τ) and let $1_{X} \backslash U \leq W$ where $W \in \operatorname{FaO}(\mathrm{X})$. Then $\alpha c l\left(1_{X} \backslash\right.$ $U)=1_{X} \backslash U \leq W$ and so $1_{X} \backslash U$ is $f g \alpha$-closed and hence U is $f g \alpha$-open in (X, τ). Since $1_{X} \backslash V$ is $f g^{*} \alpha$-closed in (X, τ) and $1_{X} \backslash V \leq U$ where U is $f g \alpha$-open in $(X, \tau), \alpha c l\left(1_{X} \backslash V\right) \leq U$ implies that $1_{X} \backslash V$ is $f g \alpha$-closed and hence V is $f g \alpha$-open in (X, τ).

Proposition 2.8.Every fuzzy a-open set is $f g^{*} \alpha$-open set in (X, τ).
Proof. Let $U \in \operatorname{FaO}(\mathrm{X})$. Then $1_{X} \backslash U$ is fuzzy a-closed in (X, τ). Let $1_{X} \backslash U \leq G$ where G is $f g \alpha$-open in (X, τ). Then $\alpha c l\left(1_{X} \backslash\right.$ $U)=1_{X} \backslash U \leq G$ and so $1_{X} \backslash U$ is $f g^{*} \alpha$-closed set and hence U is $f g^{*} \alpha$-open set in (X, τ).

Proposition 2.9.Every $f g^{*} \alpha$-open set is $f \alpha g$-open $n(X, \tau)$.
Proof. Let U be an $f g^{*} \alpha$-open set in (X, τ). Then $1_{X} \backslash U$ is $f g^{*} \alpha$ closed in (X, τ). Let $V \in \tau$ be such that $1_{X} \backslash U \leq V$. Then $V \in$
$\mathrm{FaO}(\mathrm{X})$ and so by Proposition $2.8, V$ is $f g^{*} \alpha$-open and hence by Proposition 2.7, V is $f g \alpha$-open in (X, τ). Since $1_{X} \backslash U$ is $f g^{*} \alpha-$ closed, $\alpha c l\left(1_{X} \backslash U\right) \leq V$ and then $1_{X} \backslash U$ is $f \alpha g$-closed and consequently, U is $f \alpha g$-open in (X, τ).

Proposition 2.10. Every $f g^{\#}$-open set is $f g^{*} \alpha$-open in (X, τ).
Proof. Let A be $f g^{\#}$-open set in an fts (X, τ). Then $1_{X} \backslash A$ is $f g^{\#}$ closed in (X, τ). Let G be any $f g \alpha$-open set in X such that $1_{X} \backslash A \leq G$. Then G is $f \alpha g$-open set in X. Indeed, $1_{X} \backslash G$ is $f g \alpha$ closed in X. Let $W \in \tau$ be such that $1_{X} \backslash \mathrm{G} \leq W$. Then $W \in$ $\mathrm{FaO}(\mathrm{X})$. Then $\alpha c l\left(1_{X} \backslash \mathrm{G}\right) \leq W$ and so $1_{X} \backslash G$ is $f \alpha g$-closed and hence G is $f \alpha g$-open in (X, τ). Therefore, $c l\left(1_{X} \backslash A\right) \leq G \Rightarrow$ $\alpha c l\left(1_{X} \backslash A\right) \leq c l\left(1_{X} \backslash A\right) \leq G$ and so $1_{X} \backslash A$ is $f g^{*} \alpha$-closed and hence A is $f g^{*} \alpha$-open in (X, τ).

Proposition 2.11.Every $f g^{*} \alpha$-open set is f wg α-open in (X, τ).

Proof. Let U be $f g^{*} \alpha$-open in (X, τ). Then $1_{X} \backslash U$ is $f g^{*} \alpha$-closed in (X, τ). Let $G \in \mathrm{FaO}(\mathrm{X})$ be such that $1_{X} \backslash U \leq G$. Then by Proposition 2.7 and Proposition 2.8, G is $f g \alpha$-open in (X, τ). Since $1_{X} \backslash U$ is $\mathrm{fg}^{*} \alpha$-closed, $\alpha c l\left(1_{X} \backslash U\right) \leq G \Longrightarrow \operatorname{ccl} \operatorname{int}\left(1_{X} \backslash\right.$ $U) \leq \alpha c l\left(1_{X} \backslash U\right) \leq G$ and so $1_{X} \backslash U$ is $f w g \alpha$-closed and hence U is $f w g \alpha$-open in (X, τ).

Proposition 2.12.Every $f g^{*} \alpha$-open set is $f g s$-open set in (X, τ).
Proof. Let U be $f g^{*} \alpha$-open in (X, τ). Then $1_{X} \backslash U$ is $f g^{*} \alpha$-closed in X. Let $V \in \tau$ be such that $1_{X} \backslash U \leq V$. Then $V \in \operatorname{FaO}(\mathrm{X})$ and then by Proposition 2.7 and Proposition $2.8, V$ is $f g \alpha$-open set in X. As $1_{X} \backslash U$ is $f g^{*} \alpha$-closed, $\alpha c l\left(1_{X} \backslash U\right) \leq V \Rightarrow \operatorname{scl}\left(1_{X} \backslash U\right) \leq$ $\alpha c l\left(1_{X} \backslash U\right) \leq V$ and so $1_{X} \backslash U$ is $f g s$-closed in X and consequently, U is $f g s$-open in X.

Proposition 2.13.Every $f g^{*} \alpha$-open set is $f \alpha g r$-open in (X, τ).
Proof.Let A be $f g^{*} \alpha$-open in X. Then $1_{X} \backslash A$ is $f g^{*} \alpha$-closed in X. Let $U \in \mathrm{FRO}(\mathrm{X})$ be such that $1_{X} \backslash A \leq U$. Since $U \in \mathrm{FRO}(\mathrm{X})$ $\Rightarrow U \in \tau$ and hence U is $f g \alpha$-open in X, as $1_{X} \backslash A$ is $f g^{*} \alpha$-closed, $\alpha c l\left(1_{X} \backslash A\right) \leq U$ and hence $1_{X} \backslash A$ is $f \alpha g r$-closed in X and consequently, A is $f \alpha g r$-open in (X, τ).

Proposition 2.14.Every $f g \alpha$-open set is $f \alpha g$-open set in (X, τ).
Proof. Let A be $f g \alpha$-open in X. Then $1_{X} \backslash A$ is $f g \alpha$-closed in X. Let $U \in \tau$ be such that $1_{X} \backslash A \leq U$. Then $U \in \mathrm{FaO}(\mathrm{X})$ and so $\alpha c l\left(1_{X} \backslash A\right) \leq U$ and so $1_{X} \backslash A$ is $f \alpha g$-closed and hence A is $f \alpha g$ open in X.

Proposition 2.15.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be a fuzzy function. Then the following statements are true :
(i) fis fuzzy continuous [3] implies f is $f g \alpha$-continuous.
(ii) fisfwga-continuous implies f is $f w \alpha g$-continuous.
(iii) fisfagr-continuous implies f is f gpr-continuous.

Proof. (i) Let f be fuzzy continuous and $V \in \tau_{1}$. Then $f^{-1}(V) \in \tau$. Since every fuzzy open set is $f g \alpha$-open in X (by Proposition 2.5 and Proposition 2.7), $f^{-1}(V)$ is $f g \alpha$-open in X
and hence f is $f g \alpha$-continuous.
(ii) Let f be $f w g \alpha$-continuous and $V \in \tau_{1}$. Then $f^{-1}(V)$ is $f w \alpha g$-open in X. We claim that $f^{-1}(V)$ is $f w g \alpha$-open in X. Indeed, let U be any $f w g \alpha$-open in X. Then $1_{X} \backslash U$ is $f w g \alpha-$ closed in X. Let $G \in \tau$ be such that $1_{X} \backslash U \leq G$. Then $G \in$ $\mathrm{FaO}(\mathrm{X})$ and as $1_{X} \backslash U$ is $f w g \alpha$-closed, $\alpha c l\left(\operatorname{int}\left(1_{X} \backslash U\right)\right) \leq G$ and so $1_{X} \backslash U$ is $f w \alpha g$-closed and hence U is $f w \alpha g$-open in X. Hence f is $f w \alpha g$-continuous.
(iii) Let f be $f \alpha g r$-continuous and $V \in \tau_{1}$. Then $f^{-1}(V)$ is $f \alpha g r$-open in (X, τ). Since fuzzy a-open sets are fuzzy preopen, it follows that for any $A \in I^{X}, p c l A \leq \alpha c l A$ and hence f is $f g p r$-continuous.

Definition 2.16. A fuzzy function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is called fuzzy pre- α-closed if $f(\alpha c l A)$ is fuzzy a-closed in $\left(Y, \tau_{1}\right)$, for every fuzzy set A in X.

$3 \boldsymbol{f} \boldsymbol{g}^{*} \boldsymbol{\alpha}$-CONTINUOUS FUNCTIONS

In this section the concept of $f g^{*} \alpha$-continuous function in an fts (X, τ) has been introduced and studied some of its properties and found the relationship of this function with the previously defined functions.

Definition 3.1. A fuzzy function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is said to be fuzzy generalized* α-continuous $\left(f g^{*} \alpha\right.$-continuous, for short) if $f^{-1}(V)$ is $f g^{*} \alpha$-open in X for every $V \in \tau_{1}$.

Theorem 3.2.Every fuzzy continuous function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is ${f g^{*}}^{*}$-continuous.

Proof.Let $V \in \tau_{1}$. Then $f^{-1}(V) \in \tau$. By Proposition $2.5, f^{-1}(V)$ is $f g^{*} \alpha$-open in X and hence f is $f g^{*} \alpha$-continuous.

Remark 3.3. The converse of the above theorem need not be true as seen from the following example.

Example 3.4. $f g^{*} \alpha$-continuity \nRightarrow fuzzy continuity
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=$ $0.5, A(b)=0.4, B(a)=0.4, B(b)=0.4$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Now $i^{-1}\left(1_{X} \backslash B\right)=1_{X} \backslash B$ and 1_{X} is the only fg α-open set in (X, τ) containing $1_{X} \backslash B$ and so i is $f g^{*} \alpha$-continuous. Again, $B \in \tau_{1}$ and $i^{-1}(B)=B \notin \tau_{1}$. Hence i is not fuzzy continuous.

Theorem 3.5.Every fuzzy completely continuous function is $f g^{*} \alpha-$ continuous.

Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be fuzzy completely continuous function and $V \in \tau_{1}$ be arbitrary. Then $f^{-1}(V) \in \operatorname{FRO}(\mathrm{X})$ and hence $f^{-1}(V) \in \tau$ and then by Proposition 2.5, $f^{-1}(V)$ is $f g^{*} \alpha-$ open in X. Consequently, f is $f g^{*} \alpha$-continuous.

Remark 3.6. The converse of the above theorem need not be true in general as seen from the following example.

Example 3.7.f $g^{*} \alpha$-continuity \nRightarrow fuzzy completely continuity
Consider Example 3.4. Here i is $f g^{*} \alpha$-continuous. Now
$B \in \tau_{1}$ and $i^{-1}(B)=B \notin \operatorname{FRO}(X, \tau)$. Hence i is not fuzzy completely continuous.

Theorem 3.8.Every $f g^{*} \alpha$-continuous function isf $g \alpha$-continuous.
Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be $f g^{*} \alpha$-continuous and $V \in \tau_{1}$. Then $f^{-1}(V)$ is $f g^{*} \alpha$-open in X. By Proposition 2.7, $f^{-1}(V)$ is $f g \alpha$-open in X and hence f is $f g \alpha$-continuous.

Remark 3.9. The converse of the above theorem need not be true as seen from the following example.

Example 3.10. $f g \alpha$-continuity $\nRightarrow f g^{*} \alpha$-continuity
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=$ $0.5, A(b)=0.4, B(a)=0.6, B(b)=0.4$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Fuzzy a-open sets in (X, τ) are $0_{X}, 1_{X}, A$. Then fuzzy a-closed sets in (X, τ) are $0_{X}, 1_{X}, 1_{X} \backslash A$. Now $f g \alpha$-closed sets in (X, τ) are $0_{X}, 1_{X}, U$ where $U \nsubseteq A$ and so $f g \alpha$-open sets in (X, τ) are $0_{X}, 1_{X}, 1_{X} \backslash U$ where $1_{X} \backslash U \nsupseteq 1_{X} \backslash A$. Now $1_{X} \backslash B \in \tau_{1}^{c} \cdot i^{-1}\left(1_{X} \backslash B\right)=$ $1_{X} \backslash B$ which is $f g \alpha$-closed in (X, τ). Therefore, i is $f g \alpha-$ continuous. But $1_{X} \backslash B$ is not $f g^{*} \alpha$-closed as $1_{X} \backslash B$ is $f g \alpha$-open in (X, τ) and $\alpha c l\left(1_{X} \backslash B\right)=1_{X} \backslash A \nsubseteq 1_{X} \backslash B$. Hence i is not $f g^{*} \alpha-$ continuous.

Theorem 3.11. Every $f \alpha$-continuous function is $f g^{*} \alpha$-continuous.
Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be $f \alpha$-continuous and $V \in \tau_{1}$. Then $f^{-1}(V) \in \mathrm{FaO}(\mathrm{X})$. By Proposition $2.8, f^{-1}(V)$ is $f g^{*} \alpha$-open in (X, τ) and hence f is $f g^{*} \alpha$-continuous.

Remark 3.12. The converse of the above theorem need not be true as seen from the following example.

Example 3.13. $\mathrm{fg}^{*} \alpha$-continuity $\nRightarrow f \alpha$-continuity
Consider Example 3.4. Here i is $f g^{*} \alpha$-continuous. Now $B \in$ $\tau_{1}, i^{-1}(B)=B \notin \operatorname{FaO}(X, \tau)$. Hence i is not $f \alpha$-continuous.

Theorem 3.14.Every $f g^{*} \alpha$-continuous function is $f \alpha g$-continuous.
Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be $f g^{*} \alpha$-continuous and $V \in \tau_{1}$. Then $f^{-1}(V)$ is $f g^{*} \alpha$-open in X. By Proposition 2.9, $f^{-1}(V)$ is $f \alpha g$-open in X and hence f is $f \alpha g$-continuous.

Remark 3.15. The converse of the above theorem need not be true as seen from the following example.

Example 3.16.f αg-continuity $\nRightarrow f g^{*} \alpha$-continuity
Let $X=\{a\}, \tau=\left\{0_{X}, 1_{X}, B\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, A\right\}$ where $B(a)=0.6$ and $A(a)=\frac{1}{3}$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. We claim that i is $f \alpha g$ continuous but not $f g^{*} \alpha$-continuous.
Now fuzzy a-open sets in (X, τ) are $0_{X}, 1_{X}, B, U$ where $U(a) \geq$ 0.6. Then fuzzy a-closed sets in (X, τ) are $0_{X}, 1_{X}, 1_{X} \backslash B, 1_{X} \backslash$ U where $\left(1_{X} \backslash B\right)(a)=0.4,\left(1_{X} \backslash U\right)(a) \leq 0.4$. Again $f g \alpha$-closed sets in (X, τ) are $0_{X}, 1_{X}, V$ where $V(a) \leq 0.4$ [Indeed, $\alpha c l V \leq$ $1_{X} \backslash B$ whereas $\left.V \leq U\right]$. And so $f g \alpha$-open sets in (X, τ) are $0_{X}, 1_{X}, 1_{X} \backslash V$ where $\quad\left(1_{X} \backslash V\right)(a) \geq 0.6$. Now $\quad 1_{X} \backslash A \in \tau_{1}^{c}$.

Therefore, $i^{-1}\left(1_{X} \backslash \mathrm{~A}\right)=1_{X} \backslash A$ is $f g \alpha$-open set in (X, τ). Therefore, $\quad 1_{X} \backslash A \leq 1_{X} \backslash A$, but $\quad \alpha c l\left(1_{X} \backslash A\right)=1_{X} \nsubseteq 1_{X} \backslash A$. Therefore, $1_{X} \backslash A$ is not $f g^{*} \alpha$-closed in (X, τ) and so i is not $f g^{*} \alpha$-continuous. Again, 1_{X} is the only fuzzy open set in (X, τ) such that $1_{X} \backslash A \leq 1_{X}$.

Proposition 3.17.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be an $f \alpha g$-continuous function where (X, τ) is an $f \alpha T_{b}$-space. Then f is $f g^{*} \alpha$-continuous.

Proof. Let $V \in \tau_{1}$. As f is $f \alpha g$-continuous, $f^{-1}(V)$ is $f \alpha g$-open in (X, τ). Then $1_{X} \backslash f^{-1}(V)$ is $f \alpha g$-closed in (X, τ). As (X, τ) is $f \alpha T_{b}$-space, $1_{X} \backslash f^{-1}(V)$ is fuzzy closed in (X, τ) and hence $f^{-1}(V)$ is fuzzy open in (X, τ). By Proposition $2.5, f^{-1}(V)$ is $f g^{*} \alpha$-open in (X, τ) and hence f is $f g^{*} \alpha$-continuous.

Theorem 3.18.Every $f g^{\#}$-continuous function is $f g^{*} \alpha$-continuous.
Proof.Let $V \in \tau_{1}$. Then $f^{-1}(V)$ is $f g^{\#}$-open in (X, τ). By Proposition 2.10, $f^{-1}(V)$ is $f g^{*} \alpha$-open in (X, τ) and hence f is $f g^{*} \alpha$-continuous.

Remark 3.19. The converse of the above theorem need not be true as seen from the following example.

Example 3.20. $\mathrm{fg}^{*} \alpha$-continuity $\nRightarrow f g^{\#}$ - continuity
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=$ $0.4, A(b)=0.6, B(a)=0.5, B(b)=0.7$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Now fuzzy a-open sets in (X, τ) are $0_{X}, 1_{X}, A, U$ where $U \geq A$ and so fuzzy a-closed sets in (X, τ) are $0_{X}, 1_{X}, 1_{X} \backslash A, 1_{X} \backslash U$ where $1_{X} \backslash U \leq 1_{X} \backslash A$. Now $f g \alpha$-closed sets in (X, τ) are $0_{X}, 1_{X}, 1_{X} \backslash$ $A, 1_{X} \backslash U$ and so $f g \alpha$-open sets in (X, τ) are $0_{X}, 1_{X}, A, U$. Again, $f \alpha g$-closed sets in (X, τ) are $0_{X}, 1_{x}, V, W$ where $V(a) \leq$ $0.4, V(b) \leq 0.4$ and $W>A$. Then $f \alpha g$-open sets in (X, τ) are $0_{X}, 1_{x}, 1_{X} \backslash V, 1_{X} \backslash W$ where $1-V(a) \geq 0.6,1-V(b) \geq 0.6$ and $1_{X} \backslash W<1_{X} \backslash A$.
Now $1_{X} \backslash B \in \tau_{1}^{c}$ and $i^{-1}\left(1_{X} \backslash B\right)=1_{X} \backslash B$ which is $f \alpha g$-open set in (X, τ). But $c l_{\tau}\left(1_{X} \backslash B\right)=1_{X} \backslash A \nsubseteq 1_{X} \backslash B$. Therefore, i is not $f g^{\#}$-continuous. Again, $U(a) \geq 0.5, U(b) \geq 0.6$ are $f g \alpha$-open sets in (X, τ) containing $1_{X} \backslash B$ and $\alpha c l_{\tau}\left(1_{X} \backslash B\right)=1_{X} \backslash B \leq U$. Hence i is $f g^{*} \alpha$-continuous.

Theorem 3.21.Every $f g^{*} \alpha$-continuous function is $f w g \alpha$ continuous.

Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be $f g^{*} \alpha$-continuous and $V \in \tau_{1}$. Then $f^{-1}(V)$ is $f g^{*} \alpha$-open in X. By Proposition 2.11, $f^{-1}(V)$ is $f w g \alpha$-open in X and hence f is $f w g \alpha$-continuous.

Remark 3.22. The converse of the above theorem need not be true as seen from the following example.

Example 3.23.fwg α-continuity $\nRightarrow f g^{*} \alpha$-continuity
Consider Example 3.10. Here $1_{X} \backslash B$ is $f w g \alpha$-closed as 1_{X} is the only fuzzy a-open set in (X, τ) containing $1_{X} \backslash B$.

Proposition 3.24.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be an $f w g \alpha$-continuous function where (X, τ) is an $f w g \alpha T_{g^{*} \alpha}$-space. Then f is $f g^{*} \alpha$ -
continuous.
Proof.Let $V \in \tau_{1}$. As f is $f w g \alpha$-continuous, $f^{-1}(V)$ is $f w g \alpha$ open in (X, τ). As (X, τ) is $f w g \alpha T_{g^{*} \alpha}$-space, $1_{X} \backslash f^{-1}(V)$ is $f g^{*} \alpha$ closed in (X, τ) and hence $f^{-1}(V)$ is $f g^{*} \alpha$-open in (X, τ). Consequently, f is $f g^{*} \alpha$-continuous.

Theorem 3.25.Every $f g^{*} \alpha$-continuous function is $f w \alpha g$ continuous.

Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be $f g^{*} \alpha$-continuous function. By Theorem 3.21, f is $f w g \alpha$-continuous. Then by Proposition 2.15(ii), f is $f w \alpha g$-continuous.

Remark 3.26. The converse of the above theorem need not be true as seen from the following example.

Example 3.27.fw αg-continuity $\nRightarrow f g^{*} \alpha$-continuity
Consider Example 3.16. Here $1_{X} \backslash A \in \tau_{1}^{c}, i^{-1}\left(1_{X} \backslash \mathrm{~A}\right)=1_{X} \backslash A$. $1_{X} \backslash A \leq 1_{X}$ where 1_{X} is the only fuzzy open set in (X, τ). Now, $\alpha c l_{\tau}\left(\operatorname{int}_{\tau}\left(1_{X} \backslash A\right)\right)=\alpha c l_{\tau} B=1_{X} \leq 1_{X}$. Therefore, $1_{X} \backslash A$ is $f w \alpha g$-closed in (X, τ) and hence i is $f w \alpha g$-continuous though it is not $f g^{*} \alpha$-continuous.

Theorem 3.28.Every $f g^{*} \alpha$-continuous function is $f g s$-continuous.
Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be $f g^{*} \alpha$-continuous and $V \in \tau_{1}$. As f is $f g^{*} \alpha$-continuous, $f^{-1}(V)$ is $f g^{*} \alpha$-open in (X, τ). By Proposition 2.12, $f^{-1}(V)$ is $f g s$-open in (X, τ) and hence f is fgs-continuous.

Remark 3.29. The converse of the above theorem need not be true as seen from the following example.

Example 3.30.fgs-continuity $\nRightarrow f g^{*} \alpha$-continuity

Consider Example 3.16. Since 1_{X} is the only fuzzy open set in (X, τ) such that $1_{X} \backslash A \leq 1_{X}, \operatorname{scl}_{\tau}\left(1_{X} \backslash A\right) \leq 1_{X}$ and hence $1_{X} \backslash A$ is $f g s$-closed set in (X, τ). Hence i is $f g s$-continuous.

Proposition 3.31.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be an $f g s$-continuous function where (X, τ) is an $f T_{b}$-space. Then f is $f g^{*} \alpha$-continuous.

Proof.Let $V \in \tau_{1}$. As f is $f g s$-continuous, $f^{-1}(V)$ is $f g s$-open in (X, τ). Then $1_{X} \backslash f^{-1}(V)$ is fuzzy closed in (X, τ). Hence ,$f^{-1}(V)$ is fuzzy open in (X, τ). By Proposition $2.5, f^{-1}(V)$ is $f g^{*} \alpha$-open in (X, τ) and hence f is $f g^{*} \alpha$-continuous.

Theorem 3.32.Every $f g^{*} \alpha$-continuous function is fagrcontinuous.

Proof.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be $f g^{*} \alpha$-continuous and $V \in \tau_{1}$. Then $f^{-1}(V)$ is $f g^{*} \alpha$-open in ($\left.X, \tau\right)$. By Proposition 2.13, $f^{-1}(V)$ is $f \alpha g r$-open in (X, τ). Hence f is $f \alpha g r$-continuous.

Remark 3.33. The converse of the above theorem need not be true as seen from the following example.

Example 3.34. $\alpha \alpha g r$-continuity $\nRightarrow f g^{*} \alpha$-continuity
Consider Example 3.16. The only fuzzy regular open sets in
(X, τ) are $0_{X}, 1_{X}$. Therefore, $1_{X} \backslash A \leq 1_{X} \Rightarrow \alpha c l_{\tau}\left(1_{X} \backslash A\right)=1_{X} \leq$ $1_{X} \Rightarrow 1_{X} \backslash A$ is fagr-closed in (X, $($). Hence i is fagrcontinuous though it is not $f g^{*} \alpha$-continuous.

Theorem 3.35.Every $f g^{*} \alpha$-continuous function is fgprcontinuous.

Proof. By Theorem 3.32, every $f g^{*} \alpha$-continuous function is fagr-continuous and again by Proposition 2.5(iii), it is fgpr continuous.

Remark 3.36. The converse of the above theorem need not be true as seen from the following example.

Example 3.37. $f g p r$-continuity $\nRightarrow f g^{*} \alpha$-continuity
Consider Example 3.16. The only fuzzy regular open setss in (X, τ) are $\quad 0_{X}, 1_{X} . \quad \operatorname{Now} 1_{X} \backslash A \leq 1_{X} \Rightarrow p c l_{\tau}\left(1_{X} \backslash A\right)=1_{X} \leq$ $1_{X} \Rightarrow 1_{X} \backslash A$ is $f g p r$-closed in (X, τ) and hence i is fgprcontinuous though it is not $f g^{*} \alpha$-continuous.

Theorem 3.38.If a fuzzy function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is $f \alpha$ irresolute, then it is $f g^{*} \alpha$-continuous.

Proof.Let $V \in \tau_{1}$. Then $V \in \operatorname{FaO}(Y)$. As f is $f \alpha$-irresolute, $f^{-1}(V) \in \mathrm{FaO}(\mathrm{X})$. By Proposition 2.8, $f^{-1}(V)$ is $f g^{*} \alpha$-open in (X, τ) and hence f is $f g^{*} \alpha$-continuous.

Remark 3.39. The converse of the above theorem need not be true as seen from the following example.

Example 3.40.f $g^{*} \alpha$-continuity $\Rightarrow f \alpha$-continuity
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=$ $0.5, A(b)=0.4, B(a)=0.4, B(b)=0.4$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Now $i^{-1}\left(1_{X} \backslash B\right)=1_{X} \backslash B$ and 1_{X} is the only $f g \alpha$-open set in (X, τ) containing $1_{X} \backslash B$ and so i is $f g^{*} \alpha$-continuous. Now $1_{X} \backslash B$ is fuzzy semiopen set in $\left(X, \tau_{1}\right)$ and $i^{-1}\left(1_{X} \backslash B\right)=1_{X} \backslash B$ which is not fuzzy semiopen in (X, τ). Hence i is not $f \alpha$-irresolute.

Note 3.41. The following two examples show that fuzzy semicontinuity and $f g^{*} \alpha$-continuity are independent notions.

Example 3.42.fuzzy semi-continuity $\nRightarrow f g^{*} \alpha$-continuity
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=$ $0.5, A(b)=0.4, B(a)=0.5, B(b)=0.5$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Then fuzzy α-open sets in (X, τ) are $0_{X}, 1_{X}, A$ and fuzzy α closed sets in (X, τ) are $0_{X}, 1_{X}, 1_{X} \backslash A$, fuzzy semiopen sets in (X, τ) are $0_{X}, 1_{X}, A, V$ where $A \leq V \leq 1_{X} \backslash A$. $f g \alpha$-closed sets in (X, τ) are $0_{X}, 1_{X}, U, 1_{X} \backslash A$ where $U \nsubseteq A, f g \alpha$-open sets in (X, τ) are $0_{X}, 1_{X}, A, 1_{X} \backslash U$ where $1_{X} \backslash U \nsupseteq 1_{X} \backslash A$. Now $i^{-1}(B)=B$ which is fuzzy semiopen in (X, τ) and so i is fuzzy semicontinuous. Again, $1_{X} \backslash B$ is $f g \alpha$-open set such that $B=$ $1_{X} \backslash B \leq 1_{X} \backslash B$. But $\alpha c l_{\tau}\left(1_{X} \backslash B\right)=\alpha c l_{\tau} B=1_{X} \backslash A \nsubseteq 1_{X} \backslash B$. Therefore, $1_{X} \backslash B$ is not $f g^{*} \alpha$-closed and so B is not $f g^{*} \alpha$-open in (X, τ) and hence i is not $f g^{*} \alpha$-continuous.

Example 3.43. $\mathrm{fg}^{*} \alpha$-continuity \nRightarrow fuzzy semi-continuity

Consider Example 3.40. Here B is fuzzy semiopen in $\left(X, \tau_{1}\right)$. But $i^{-1}(B)=B \notin \mathrm{FSO}(X, \tau)$. Therefore, i is $f g^{*} \alpha$-continuous but not fuzzy semi-continuous.

Remark 3.44. The following two examples show that $f g$ continuous function and $f g^{*} \alpha$-continuous function are independent notions.

Example 3.45. $f g$-continuity $\nRightarrow f g^{*} \alpha$-continuity

Consider Example 3.16. Since 1_{X} is the only fuzzy open set such that $1_{X} \backslash A \leq 1_{X}$. Thencl $l_{\tau}\left(1_{X} \backslash A\right)=1_{X}$ and so $1_{X} \backslash A$ is $f g$ closed in (X, τ) and so A is $f g$-open set $\operatorname{in}(X, \tau)$. Hence i is $f g$ continuous though it is not $f g^{*} \alpha$-continuous.

Example 3.46. $f g^{*} \alpha$-continuity $\nRightarrow f g$-continuity
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=$ $0.4, A(b)=0.6, B(a)=0.7, B(b)=0.6$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts 's. Consider the identity function $i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$. Now $1_{X} \backslash B \in \tau_{1}^{c}$. Then $i^{-1}\left(1_{X} \backslash B\right)=1_{X} \backslash B$. Now any $f g \alpha$-open set in (X, τ) other than 0_{X} contains $_{X} \backslash B$ and $\alpha c l_{\tau}\left(1_{X} \backslash B\right)=1_{X} \backslash B$ and hence i is $f g^{*} \alpha$-continuous. But $1_{X} \backslash B \leq A$ and $c l_{\tau}\left(1_{X} \backslash\right.$ $B)=1_{X} \backslash A \nsubseteq A$ and so i is not $f g$-continuous.

Theorem 3.47.A fuzzy function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is $f g^{*} \alpha$ continuous iff the inverse image of every fuzzy closed set in Yis $f g^{*} \alpha$-closed in X.

Proof. Let f be $f g^{*} \alpha$-continuousand $F \in \tau_{1}^{c}$. Then $1_{X} \backslash F \in \tau_{1}$. Since f is $f g^{*} \alpha$-continuous, $f^{-1}\left(1_{X} \backslash F\right)=1_{X} \backslash f^{-1}(F)$ is $f g^{*} \alpha$ open in X. Hence $f^{-1}(F)$ is $f g^{*} \alpha$-closed in X.
Conversely, let us suppose that $f^{-1}(F)$ be $f g^{*} \alpha$-closed in X for every fuzzy closed set F in Y. Let $V \in \tau_{1}$. Then $1_{X} \backslash V \in \tau_{1}^{c}$. By assumption, $f^{-1}\left(1_{Y} \backslash V\right)=1_{X} \backslash f^{-1}(V)$ is $f g^{*} \alpha$-closed in X and so $f^{-1}(V)$ is $f g^{*} \alpha$-open in X and hence f is $f g^{*} \alpha$-continuous.

Theorem 3.48.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be an $f g \alpha$-continuous, f -pre-a-closed function, then $f(A)$ is $f \alpha g$-closed in $\left(Y, \tau_{1}\right)$ for every $f g^{*} \alpha$-closed set Ain (X, τ).

Proof. Let A be an $f g^{*} \alpha$-closed set in X and $V \in \tau_{1}$ be such that $f(A) \leq V$. Then $A \leq f^{-1}(V)$. As f is $f g \alpha$-continuous, $f^{-1}(V)$ is $f g \alpha$-open in (X, τ). Since A is $f g^{*} \alpha$-closed, and $A \leq f^{-1}(V), \quad \alpha c l_{\tau} A \leq f^{-1}(V) \Rightarrow f\left(\alpha c l_{\tau} A\right) \leq f f^{-1}(V) \leq V$. Since f is f-pre-a-closed, $f\left(\alpha c l_{\tau} A\right)$ is fuzzy a-closed in $\left(Y, \tau_{1}\right)$. Therefore, $\quad \alpha c l_{\tau_{1}}\left(f\left(\alpha c l_{\tau} A\right)\right)=f\left(\alpha c l_{\tau} A\right) \leq V$. Now, $A \leq$ $\alpha c l_{\tau} A \Rightarrow f(A) \leq f\left(\alpha c l_{\tau} A\right) \Rightarrow \alpha c l_{\tau_{1}}(f(A)) \leq$
$\alpha c l_{\tau_{1}}\left(f\left(\alpha c l_{\tau} A\right)\right)=f\left(\alpha c l_{\tau} A\right) \leq V$. Hence $f(A)$ is $f \alpha g$-closed in $\left(Y, \tau_{1}\right)$.

Theorem 3.49.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be fuzzy continuous, fuzzy pre-a-closed function, then $f(A)$ is fag-closed in $\left(Y, \tau_{1}\right)$ for everyf $g^{*} \alpha$-closed set $\operatorname{Ain}(X, \tau)$.

Proof. Combining Theorem 3.2 and Theorem 3.8, we say that f is $f g \alpha$-continuous. Then by Theorem 3.48, $f(A)$ is $f \alpha g$-closed for every $f g^{*} \alpha$-closed set A in X.

Theorem 3.50. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be an $f g \alpha$-continuous, f -
pre-a-closed function and $\left(Y, \tau_{1}\right)$ is an $f \alpha T_{b}$-space, then $f(A)$ is $f g^{*} \alpha$-closed in $\left(Y, \tau_{1}\right)$ for every $f g^{*} \alpha$-closed set $\operatorname{Ain}(X, \tau)$.
Proof. Let A be $f g^{*} \alpha$-closed in (X, τ) and V be any $f g \alpha$-open set in Y such that $f(A) \leq V$. By Proposition 2.14, V is $f \alpha g$-open in Y. Since $\left(Y, \tau_{1}\right)$ is $f \alpha T_{b}$-space, $1_{X} \backslash V$ being $f \alpha g$-closed in $\left(Y, \tau_{1}\right)$ is fuzzy closed in $\left(Y, \tau_{1}\right)$ and so V is fuzzy open in $\left(Y, \tau_{1}\right)$. As f is $f g \alpha$-continuous, $f^{-1}(V)$ is $f g \alpha$-open in (X, τ). Since A is $f g^{*} \alpha$-closed in (X, τ) and $A \leq f^{-1}(V), \alpha c l_{\tau} A \leq$ $f^{-1}(V) \Rightarrow f\left(\alpha c l_{\tau} A\right) \leq f f^{-1}(V) \leq V$. Since f is f-pre- $\alpha-$ closed, $f\left(\alpha c l_{\tau} A\right)$ is fuzzy a-closed in Y. Therefore, $\alpha c l_{\tau_{1}}\left(f\left(\alpha c l_{\tau} A\right)\right)=f\left(\alpha c l_{\tau} A\right) \leq V \quad$ and \quad so $\quad \alpha c l_{\tau_{1}}(f(A)) \leq$ $\alpha c l_{\tau_{1}}\left(f\left(\alpha c l_{\tau} A\right)\right) \leq V$. Consequently, $f(A)$ is $f g^{*} \alpha$-closed in $\left(Y, \tau_{1}\right)$.

Remark 3.51.The composition of two $f g^{*} \alpha$-continuous functions need not be $f g^{*} \alpha$-continuous function as seen from the following example.

Example 3.52.Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau^{\prime}=\left\{0_{X}, 1_{X}\right\}$, $\tau_{1}=\left\{0_{X}, 1_{X}, B\right\} \quad$ where $\quad A(a)=0.5, A(b)=0.4, B(a)=$ $0.6, B(b)=0.4$. Then $(X, \tau),\left(X, \tau^{\prime}\right)$ and $\left(X, \tau_{1}\right)$ are fts's. Consider two identity functionsi $:(X, \tau) \rightarrow\left(X, \tau^{\prime}\right)$ and i_{1} : $\left(X, \tau^{\prime}\right) \rightarrow\left(X, \tau_{1}\right)$. Then clearly i and i_{1} are $f g^{*} \alpha$-continuous. But $i_{1} o i:(X, \tau) \rightarrow\left(X, \tau_{1}\right)$ is not $f g^{*} \alpha$-continuous as seen from Example 3.10.

Theorem 3.53.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ and $g:\left(Y, \tau_{1}\right) \rightarrow\left(Z, \tau_{2}\right)$ be two $f g^{*} \alpha$-continuous functions where $\left(Y, \tau_{1}\right)$ is $f g^{*} \alpha T_{c}$-space. Then their composition g of $:(X, \tau) \rightarrow\left(Z, \tau_{2}\right)$ is an $f g^{*} \alpha$-continuous function.

Proof.Let $V \in \tau_{2}$. Then $g^{-1}(V)$ is $f g^{*} \alpha$-open in $\left(Y, \tau_{1}\right)$. As $\left(Y, \tau_{1}\right)$ is $f g^{*} \alpha T_{c}$-space, $1_{Y} \backslash g^{-1}(V)$ is fuzzy closed in $\left(Y, \tau_{1}\right)$ and so $g^{-1}(V)$ is fuzzy open in ($\left.Y, \tau_{1}\right)$. Again, as f is $f g^{*} \alpha$ continuous, $f^{-1}\left(g^{-1}(V)\right)$ is $f g^{*} \alpha$-open in (X, τ) and so $(g o f)^{-1}(V)=f^{-1}\left(g^{-1}(V)\right)$ for every $V \in \tau_{2}$. Consequently, $g o f$ is $f g^{*} \alpha$-continuous.

Theorem 3.54.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be an $f \alpha$-irresolute function and $g:\left(Y, \tau_{1}\right) \rightarrow\left(Z, \tau_{2}\right)$ be an $f g^{*} \alpha$-continuous function in $\left(Y, \tau_{1}\right)$ which is $f g^{*} \alpha T_{\alpha}$-space, then the composition gof $:(X, \tau) \rightarrow\left(Z, \tau_{2}\right)$ is $f \alpha$-continuous.

Proof. Let $V \in \tau_{2}$. As g is $f g^{*} \alpha$-continuous, $g^{-1}(V)$ is $f g^{*} \alpha$ openin $\left(Y, \tau_{1}\right)$. Since $\left(Y, \tau_{1}\right)$ is $f g^{*} \alpha T_{\alpha}$-space, $1_{X} \backslash g^{-1}(V)$ is fuzzy a-closed in $\left(Y, \tau_{1}\right)$ and so,$g^{-1}(V)$ is fuzzy a-open in $\left(Y, \tau_{1}\right)$. Since f is $f \alpha$-irresolute, $f^{-1}\left(g^{-1}(V)\right)=(g o f)^{-1}(V) \in \mathrm{FaO}(X)$. Hence gof is $f \alpha$-continuous.

Definition 3.55.For a fuzzy set A in an fts $(X, \tau), f g^{*} \alpha c l A=\wedge$ $\left\{B: A \leq B, B\right.$ is $f g^{*} \alpha$-closed in $\left.(X, \tau)\right\}$.

Result 3.56. It is clear from Definition 3.56 that $f g^{*} \alpha c l A=A$ for any $f g^{*} \alpha$-closed set A in an fts (X, τ).

Theorem 3.57.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be an $f g^{*} \alpha$-continuous function. Then for anyA $\in I^{X}, f\left(f g^{*} \alpha c l_{\tau} A\right) \leq c l_{\tau_{1}} f(A)$.

Proof. Let $A \in I^{X}$. Then $c l_{\tau_{1}} f(A) \in \tau_{1}^{c}$ and as f is $f g^{*} \alpha-$ continuous, $f^{-1}\left(c l_{\tau_{1}} f(A)\right)$ is $f g^{*} \alpha$-closed in (X, τ). Hence by Result 3.57, $f g^{*} \alpha c l_{\tau}\left(f^{-1}\left(c l_{\tau_{1}} f(A)\right)\right)=f^{-1}\left(c l_{\tau_{1}} f(A)\right)$. Now $f(A) \leq c l_{\tau_{1}} f(A) \Rightarrow A \leq f^{-1} f(A) \leq f^{-1}\left(c l_{\tau_{1}} f(A)\right)$. Therefore, $f^{-1}\left(c l_{\tau_{1}} f(A)\right)$ being a $f g^{*} \alpha$-closed set containing A. Then $f g^{*} \alpha c l_{\tau} A \leq f^{-1}\left(c l_{\tau_{1}} f(A)\right)$.Therefore, $f\left(f g^{*} \alpha c l_{\tau} A\right) \leq c l_{\tau_{1}} f(A)$.

Corollary 3.58.Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be a fuzzy continuous function. Then for any $A \in I^{X}, f\left(f g^{*} \alpha c l_{\tau} A\right) \leq c l_{\tau_{1}} f(A)$.

Proof. The proof follows from the fact that every fuzzy continuous function is $f g^{*} \alpha$-continuous and from Theorem 3.57.

$4 \boldsymbol{f} g^{*} \alpha$-OPEN FUNCTIONS AND $\boldsymbol{f} \boldsymbol{g}^{*} \alpha$-CLOSED FUNCTIONS

In this section two new types of functions viz. $f g^{*} \alpha$-open function and $f g^{*} \alpha$-closed function have been introduced and studied and found the relationship of these two functions with fuzzy open function and fuzzy closed function.

Definition 4.1. A function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is said to be $f g^{*} \alpha$-open function if the image of every fuzzy open set in (X, τ) is $f g^{*} \alpha$-open in $\left(Y, \tau_{1}\right)$.

Definition 4.2.A function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is said to be $f g^{*} \alpha-$ closed function if the image of every fuzzy closed set in (X, τ) is $f g^{*} \alpha$-closed in (Y, τ_{1}).

Theorem 4.3.Every fuzzy open function is $f g^{*} \alpha$-open.
Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be a fuzzy open function and $V \in \tau$. Then $f(V)$ is fuzzy open set in $\left(Y, \tau_{1}\right)$. By Proposition 2.5, $f(V)$ is $f g^{*} \alpha$-open in $\left(Y, \tau_{1}\right)$ and hence f is $f g^{*} \alpha$-open function.

Remark 4.4. The converse of the above theorem need not be true as seen from the following example.

Example 4.5. $\mathrm{fg}^{*} \alpha$-open function \nRightarrow fuzzy open function
Let $X=\{a, b\}, \tau=\left\{0_{X}, 1_{X}, A\right\}, \tau_{1}=\left\{0_{X}, 1_{X}, B\right\}$ where $A(a)=$ $0.4, A(b)=0.6, B(a)=0.5, B(b)=0.7$. Then (X, τ) and $\left(X, \tau_{1}\right)$ are fts's. Consider the identity function $i:\left(X, \tau_{1}\right) \rightarrow(X, \tau)$. Then $i(B)=B$. We claim that B is $f g^{*} \alpha$-open in (X, τ).
Now $1-B(a)=0.5,1-B(b)=0.3$. As in Example 3.20, $U \geq 1_{X} \backslash B$, for all $f g \alpha$-open sets U in (X, τ) and $\alpha c l_{\tau}\left(1_{X} \backslash B\right)=$ $1_{X} \backslash B \leq U$ and hence $1_{X} \backslash B$ is $f g^{*} \alpha$-closed in (X, τ) and so B is $f g^{*} \alpha$-open in (X, τ). Consequently, i is $f g^{*} \alpha$-open function. But $B \notin \tau$ and hence i is not fuzzy open function.

Theorem 4.6.Every fuzzy closed function is $f g^{*} \alpha$-closed.
Proof. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ be a fuzzy closed function and $V \in \tau^{c}$. Then $f(V) \in \tau_{1}^{c}$. By Proposition 2.5, $f(V)$ is $f g^{*} \alpha$ closed and hence f is $f g^{*} \alpha$-closed function.

Remark 4.7. The converse of the above theorem need not be true as seen from the following example.

Example 4.8. $\mathrm{fg}^{*} \alpha$-closedfunction \nRightarrow fuzzy closed function Consider Example 4.5. Here $1_{X} \backslash B \in \tau_{1}^{c}$ and so $i\left(1_{X} \backslash B\right)=$ $1_{X} \backslash B$ which is $f g^{*} \alpha$-closed in (X, τ) but is not fuzzy closed in (X, τ). Hence i is $f g^{*} \alpha$-closed function though it is not fuzzy closed function.

Theorem 4.9.A function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is $f g^{*} \alpha$-closed iff for each $B \in I^{Y}$ and for each $G \in$ twith $f^{-1}(B) \leq G$, there exists an $f g^{*} \alpha$-open set F in Y such that $B \leq F, f^{-1}(F) \leq G$.

Proof. Let $B \in I^{Y}$ and $G \in \tau$ be such that $f^{-1}(B) \leq G$. Then $1_{X} \backslash G \in \tau^{c}$. As f is $f g^{*} \alpha$-closed function, $f\left(1_{X} \backslash G\right)$ is $f g^{*} \alpha-$ closed in Y. Let $F=1_{Y} \backslash f\left(1_{X} \backslash \mathrm{G}\right)$. Then F is $f g^{*} \alpha$-open in Y. Now $1_{X} \backslash G \leq 1_{X} \backslash f^{-1}(B)=f^{-1}\left(1_{Y} \backslash B\right)$. Therefore, $f\left(1_{X} \backslash G\right) \leq$ $f f^{-1}\left(1_{Y} \backslash B\right) \leq 1_{Y} \backslash B$ and so $1_{Y} \backslash f\left(1_{X} \backslash G\right) \geq B \Rightarrow B \leq F$ and $f^{-1}(F)=f^{-1}\left(1_{Y} \backslash f\left(1_{X} \backslash G\right)\right)=1_{X} \backslash f^{-1} f\left(1_{X} \backslash G\right) \Rightarrow 1_{X} \backslash G \leq$
$f^{-1} f\left(1_{X} \backslash G\right)$. Therefore, $\quad \geq 1_{X} \backslash f^{-1} f\left(1_{X} \backslash \mathrm{G}\right)=f^{-1}(F) \Rightarrow$ $f^{-1}(F) \leq G$.
Conversely, let $U \in \tau^{c}$. Then $1_{X} \backslash U \in \tau$. Now $f^{-1}\left(1_{Y} \backslash f(U)\right)=$ $1_{X} \backslash f^{-1} f(U)$. Since, $\quad U \leq f^{-1} f(U), \quad 1_{X} \backslash f^{-1} f(U) \leq 1_{X} \backslash U$. Therefore, $f^{-1}\left(1_{Y} \backslash f(U)\right) \leq 1_{X} \backslash U$, where $1_{Y} \backslash f(U) \in I^{Y}$. Then there exists an $f g^{*} \alpha$-open set F in Y such that $1_{Y} \backslash f(U) \leq F$ and $f^{-1}(F) \leq 1_{X} \backslash U$. Therefore, $U \leq 1_{X} \backslash f^{-1}(F)$. Hence $1_{Y} \backslash F \leq$ $f(U) \leq f\left(1_{X} \backslash f^{-1}(F)\right) \leq 1_{Y} \backslash F \Rightarrow f(U)=1_{Y} \backslash F$ and so $f(U)$ is $f g^{*} \alpha$-closed in Y. Consequently, f is $f g^{*} \alpha$-closed function.

Theorem 4.10.The function $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is fuzzy closed function and $g:\left(Y, \tau_{1}\right) \rightarrow\left(Z, \tau_{2}\right)$ isf $g^{*} \alpha$-closed function, then their composition g of $:(X, \tau) \rightarrow\left(Z, \tau_{2}\right)$ is $f g^{*} \alpha$-closed function.

Proof.Let $G \in \tau^{c}$. Then as f is fuzzy closed function, $f(G) \in \tau_{1}^{c}$. As g is $f g^{*} \alpha$-closed function, $g(f(G))=(g o f)(G)$ is $f g^{*} \alpha$ closed in $\left(Z, \tau_{2}\right)$. Consequently, $g o f$ is $f g^{*} \alpha$-closed function.

Theorem 4.11. Let $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ and $g:\left(Y, \tau_{1}\right) \rightarrow\left(Z, \tau_{2}\right)$ be such that their composition g o $f:(X, \tau) \rightarrow\left(Z, \tau_{2}\right)$ is an $f g^{*} \alpha-$ closed function. Then the following statements are true:
(i) If f is fuzzy surjective continuous, then g is $f g^{*} \alpha$ closed function.
(ii) If f is fuzzy surjective $f g \alpha$-continuous and (X, τ) is an $f \alpha T_{b}$-space, then g is $f g^{*} \alpha$-closed function.
(iii) If g is $f g^{*} \alpha$-continuous and injective, then f is fuzzy closed function.

Proof. (i) Let $V \in \tau_{1}^{c}$. Since f is fuzzy continuous, $f^{-1}(V) \in$ τ^{c}. Since $g o f$ is $f g^{*} \alpha$-closed function, $(g \circ f)\left(f^{-1}(V)\right)$ is $f g^{*} \alpha$ closed set in Z. As f is surjective, $(g \circ f)\left(f^{-1}(V)\right)=$ $g\left(f\left(f^{-1}(V)\right)\right)=g(V)$, proving that g is $f g^{*} \alpha$-closed function.
(ii)Let $V \in \tau_{1}^{c}$. Since f is $f g \alpha$-continuous, $f^{-1}(V)$ is $f g \alpha$ closed in X. By Proposition 2.14, $f^{-1}(V)$ is $f \alpha g$-closed in X. As (X, τ) is an $f \alpha T_{b}$-space, $f^{-1}(V)$ is fuzzy closed in X. As gof is $f g^{*} \alpha$-closed function, $(g o f)\left(f^{-1}(V)\right)=g(V) \quad$ (as $\quad f \quad$ is surjective) is $f g^{*} \alpha$-closed set in Z. Hence g is $f g^{*} \alpha$-closed function.
(iii)Let $V \in \tau^{c}$. Since $g \circ f$ is $f g^{*} \alpha$-closed function, $(g \circ f)(V)=$
$g(f(V))$ is $f g^{*} \alpha$-closed in Z. Since g is $f g^{*} \alpha$-continuous and injective, $g^{-1}(g \circ f)(V)=g^{-1} g(f(V))=f(V)$ is fuzzy closed in Y. Hence f is fuzzy closed function.

Theorem 4.12. If $f:(X, \tau) \rightarrow\left(Y, \tau_{1}\right)$ is $f g^{*} \alpha$-closed function, then $f g^{*} \alpha c l_{\tau_{1}}(f(U)) \leq f\left(c l_{\tau}(U)\right)$, for every $U \in I^{X}$.
Proof.Let $U \in I^{X}$. Then $c l_{\tau} U \in \tau^{c}$. Since f is $f g^{*} \alpha$-closed, $f\left(c l_{\tau} U\right)$ is $f g^{*} \alpha$-closed set in Y. As $U \leq c l_{\tau} U, f(U) \leq f\left(c l_{\tau} U\right)$, by Definition 3.55, $f g^{*} \alpha c l_{\tau_{1}}(f(U)) \leq f\left(c l_{\tau}(U)\right)$.

References

[1] K.K. Azad, "On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity," J. Math. Anal. Appl., 82pp.14-32,1981.
[2] A.S. Bin Shahna, " On fuzzy strong semicontinuity and fuzzy precontinuity," Fuzzy Sets and Systems, 44 pp. 303-308, 1991.
[3] C.L.Chang, "Fuzzy topological spaces,"J. Math. Anal. Appl., 24 pp. 182-190, 1968.
[4] M.A. FathAlla, "a-continuous mappings in fuzzy topological spaces,"Bull. Cal. Math. Soc., 80 pp. 323-329, 1988.
[5] A.S. Mashhour, M.H. Ghanim and M.A. FathAlla, "On fuzzy noncontinuous mappings," Bull. Cal.Math. Soc., 78 pp. 57-69, 1986.
[6] L.A. Zadeh, "Fuzzy Sets," Inform. Control, 8 pp. 338-353, 1965.

[^0]: - Assistant Professor, Department of Mathematics, Victoria Institution
 (College), A.P.C. Road, Kolkata - 700009, India. PH - +919883118254. Email:anjanabhattacharyya@hotmail.com

